Agricultural Decision Making Under Climate Uncertainty

Risk & Decision Analysis Applied to Climate Adaptation

William R. Travis
Department of Geography
and
Institute of Behavioral Science
University of Colorado - Boulder
Key Points:

• Agriculture is risky business, especially due to markets and climate

• Risk pervades the whole structure of agriculture, from the producer to the trader, and is often addressed by government policy which plays a big role in ag worldwide.
 – Price supports
 – Marketing assistance
 – Insurance
 – Disaster aid

• Systems to manage risk within ag are well-developed:
 – Adaptive, flexible production methods often with intelligence gathering
 – Farm finance management (e.g., from family savings to alternative income)
 – Marketing strategies (on-farm storage; forward contracts, etc.)
Formal risk and decision analysis has been applied to agriculture for a long time:

Different from traditional ag-economic approaches, but generally compatible
Attend to: Risk, uncertainty, decision making, and decision support
Some aspects of ag risk

• Large uncertainty, but very adaptable system, mostly short-term, repetitive “bets” with lots of learning

• Some long-term investments (e.g., irrigation), so some dimensions of long-term risk do matter

• Risk aversion vs. regret aversion (mini-max, maxi-min, etc.)

• Deal with full statistical distribution, and explicitly with extreme events and catastrophic loss

• RDA should lead to decision support (RDA does not yield decisions but can provide decision support)

• Incremental vs. transformational responses (adaptation)
Enterprise Decision Structuring

• What’s the goal of the DM’er? What outcomes matter (utilities), what options, sequences, range of outcomes, etc.
 – What to plant, when to plant, manage for pest, manage fertility, when to harvest, how to market, how to hedge

• What utility function?
 – risk aversion posture (e.g., maximum yield, maximized expected utility, avoid complete loss; trade-off with average gain, etc.).
Risk analysis and risk management and decision-support emerging as important planning tools
Risk

\[R = p \cdot c \]

Expected utility of a decision

\[
EU(d_i) = \sum_{j=1}^{N} P(s_j) \cdot U(d_i, s_j)
\]

\(d_i \) = alternative decisions \(i = 1, 2 \ldots \)
\(N \) = number of possible future states \((s_j) \)
\(P(s_j) \) = probability of state \(j \)

Risk and regret aversion

If \(S \) is a state, and \(P \) a policy choice, let \(P^*(S) \) be the best policy choice conditional on \(S \) being the state, and \(V(S, P) \) the value of choosing policy \(P \) if the outcome is \(S \). Then the goal is:

\[
\min_p \max_S [V(S, P^*(S)) - V(S, P)]
\]
FISHERMAN'S CHOICE

A. EXPECTED UTILITY: COMPLETE UNCERTAINTY

<table>
<thead>
<tr>
<th>ALTERNATIVE ACTIONS</th>
<th>STATES OF NATURE</th>
<th>Expected utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁ Hurricane</td>
<td>E₂ No. hurricane</td>
</tr>
<tr>
<td>A₁ Evacuate</td>
<td>Equipment intact Pay for evacuation (+1)</td>
<td>Equipment intact Pay for evacuation (+1)</td>
</tr>
<tr>
<td>A₂ Remain</td>
<td>Lose equipment (0)</td>
<td>Equipment intact (+2)</td>
</tr>
</tbody>
</table>

B. EXPECTED UTILITY: KNOWN PROBABILITY

<table>
<thead>
<tr>
<th>ALTERNATIVE ACTIONS</th>
<th>STATES OF NATURE</th>
<th>Expected utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁ Hurricane</td>
<td>E₂ No. hurricane</td>
</tr>
<tr>
<td></td>
<td>Equipment intact Pay for evacuation (.4(+1) = .4)</td>
<td>Equipment intact Pay for evacuation (.6(+1) = .6)</td>
</tr>
<tr>
<td>A₁ Evacuate</td>
<td>.4(0) = 0</td>
<td>Equipment intact (+2)</td>
</tr>
<tr>
<td>A₂ Remain</td>
<td>Lose equipment</td>
<td>Equipment intact (+2)</td>
</tr>
</tbody>
</table>

C. EXPECTED UTILITY: SUBJECTIVE PROBABILITIES

<table>
<thead>
<tr>
<th>ALTERNATIVE ACTIONS</th>
<th>STATES OF NATURE</th>
<th>Expected utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁ Hurricane</td>
<td>E₂ No. hurricane</td>
</tr>
<tr>
<td>A₁ Evacuate</td>
<td>Equipment intact Pay for evacuation (.9(+2) = 1.8)</td>
<td>Equipment intact Pay for evacuation (.1(+2) = .2)</td>
</tr>
<tr>
<td>A₂ Remain</td>
<td>Lose equipment (.9(0) = 0)</td>
<td>Equipment intact (.1(+4) = .4)</td>
</tr>
</tbody>
</table>

D. EXPECTED UTILITY: MINIMIZE REGRET

<table>
<thead>
<tr>
<th>ALTERNATIVE ACTIONS</th>
<th>STATES OF NATURE</th>
<th>Expected utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁ Hurricane</td>
<td>E₂ No. hurricane</td>
</tr>
<tr>
<td>A₁ Evacuate</td>
<td>Equipment intact Pay for evacuation 1-1</td>
<td>Equipment intact 0</td>
</tr>
<tr>
<td>A₂ Remain</td>
<td>Lose equipment</td>
<td>Equipment intact</td>
</tr>
</tbody>
</table>

FIGURE 2.8—PAY-OFF MATRICES FOR EQUIPMENT EVACUATION ON TROPICAL CYCLONE WARNING

In trying to decide whether to evacuate the boat with his equipment or to "sit it out" in the face of a tropical cyclone warning, a "rational" fisherman might analyze his choices in many ways depending on his knowledge, beliefs, and values.
<table>
<thead>
<tr>
<th>Chance of Hurricane = 20%</th>
<th>Hurricane</th>
<th>No Hurricane</th>
<th>EU=(.2*-1)+(.8*-1)=-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuate</td>
<td>-1</td>
<td>-1</td>
<td>EU=(.2*-1)+(.8*-1)=-1</td>
</tr>
<tr>
<td>Remain</td>
<td>-3</td>
<td>0</td>
<td>EU=(.2*-3)+(.8*0)=-0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30% chance</th>
<th>Hurricane</th>
<th>No Hurricane</th>
<th>EU=(.3*-1)+(.7*-1)=-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuate</td>
<td>-1</td>
<td>-1</td>
<td>EU=(.3*-1)+(.7*-1)=-1</td>
</tr>
<tr>
<td>Remain</td>
<td>-3</td>
<td>0</td>
<td>EU=(.3*-3)+(.7*0)=-0.9</td>
</tr>
<tr>
<td></td>
<td>Hurricane</td>
<td>No Hurricane</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Evacuate</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Remain</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hurricane</th>
<th>No Hurricane</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuate</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Remain</td>
<td>0</td>
<td>2</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Problem 5.8 - Excel Solution
Making Hard Decisions with DecisionTools, 3rd ed., Clemens & Reilly

<table>
<thead>
<tr>
<th>Cost of Burners</th>
<th>Damage using Burners</th>
<th>Cost of Sprinklers</th>
<th>Damage using Sprinklers</th>
<th>Value of Crop</th>
<th>Probability of Freeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7,000</td>
<td>Low</td>
<td>$20,000</td>
<td>High</td>
<td>$50,000</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Best Guess</td>
<td>$17,500</td>
<td>Low</td>
<td>$25,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Best Guess</td>
<td>$27,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>$30,000</td>
<td></td>
</tr>
</tbody>
</table>

Results found by varying losses in the tree and determining the expected loss:
Alternative	Min Expected Crop Value	Max Expected Crop Value
Do nothing | $25,000 | $25,000 |
Set burners | $35,000 | $37,500 |
Use sprinklers | $35,000 | $35,000 |

Spider Graph of Decision Tree 'Problem 5.8'
Expected Value of Entire Model

- Damage using Burners (B7)
- Damage using Sprinklers (D7)
Less work yet on when and how to adapt to climate change.
Farmers and other decision-makers face real conundrums:

• Adapt to what trend?
• When to adapt?
• What adaptation?

Ouch!
FarmAdap: Great Plains Dryland Wheat Farm Model
When to Adapt?

Adaptations under rapid change
Adaptations under gradual change

Gradual change w/ extreme drought

Begin adaptation w/ extreme drought

Begin adaptation w/o extreme drought

- Non-Adaptive (Continuous Spring Wheat)
- Adaptive Fallow without extreme drought
- Adaptive Fallow with extreme drought

Year

Net income (1,000 $)
https://www.AnalyticaCloud.com/acp/Client/AcpClient.aspx?inviteId=19&inviteCode=322716&subName=william%2Etravis%40colorado%2Eedu
Much work to do in ag risk and climate:

- Extremes and complete loss
- Alternative risk transfer instruments
- Game theory: how to choose when choice by others affects your utility.
- Value (+/-) of additional information (e.g., seasonal to decadal forecasts)
Farmers in central North Dakota are growing more Winter Wheat as winters warm and cold-hardy varieties become available. But watch out for those cold extremes! Is it time to switch yet?

- Adapt to what trend?
- When to adapt?
- What adaptation?

Ouch!
North Dakota base
North Dakota Step 2

[Map of North Dakota with regions highlighted in red, blue, and yellow.]
Insurance Instruments

• Yield deficiency
• Income protection
• Index insurance (often rainfall, but maybe range condition, even NVDI)
 – Is insurance adaptive?
 – Can insurance schemes keep up with climate and technological change?
 – Might it incentivize risky behaviors and non-adaptation (worries from the flood insurance program in the US)?
Herd management after first year of drought

- Hold on (Normal Cull)
 - 2nd year Drought
 - No Drought
 - Normal income; Range Fair-Good

- Moderate Cull
 - No Drought
 - High Payoff; Range Good
 - Low Payoff; Range Fair
 - Continued Drought
 - High Payoff; Range Good
 - Low Payoff; Range Good

- Sell Off
 - No Drought
 - High Payoff; Range Good
 - Low Payoff; Range Good
 - Continued Drought
 - High Payoff; Range Good
 - Low Payoff; Range Good

Sale Decision

2nd yr drought?

Market

Income & Range Outcome
Ranching drought decision-making model

60% chance of drought in second year:
- Cull to forage available
- Cull 10%
- No cull

Sell the herd or hold on?