Simulating the urban heat island of Greater Houston, Texas

Andrew Monaghan, Michael Barlage, Leiqiu Hu, Nathan Brunsell, Johannes Feddema, Olga Wilhelmi

Steve Sain
“The System for Integrated Modeling of Metropolitan Extreme Heat Risk (SIMMER)”

Collaborators:

- M. Shepherd (University of Georgia)
- C. Rinner (Ryerson University)
- A. de Sherbibin (CIESIN, Columbia University)
- A. Awosika-Olumo, D. Banerjee (Houston Department of Health and Human Services)
- R. Harriss (Houston Advanced Research Center)
- U. Bickis and A. Yagouti (Climate Change and Health Office, Health Canada HQ, Ottawa)
- M. Campbell and S. Gower (Environmental Protection Office, Toronto Public Health)
- C. De Jong (Toronto Environment Office, City of Toronto)
- E. Fetzer (NASA JPL)
- O. Wilhelmi, M. Hayden, A. Monaghan, M. Barlage, S. Sain, K. Oleson, C. Uejio (NCAR)

Funded by NASA ROSES (09-IDS09-34)
Motivation and Goals

• Urban extreme heat and climate change are public health concerns
 – Observed impacts
 – Projected changes in extreme heat events

• Impacts (adverse health outcomes) are distributed unevenly
 – Societal vulnerability

• Relationship between human health and extreme heat is a complex medical, social and environmental issue
 – Information is needed for public health interventions and climate adaptation

• Advance methodology for assessing current and future urban vulnerability from heat waves through integration of physical and social science models, research results, and remote sensing data; Provide actionable results.
Integrating diverse data into spatial heat-health models

Multi-level map of extreme heat vulnerability

Heaton et al. (submitted to Spatial and Spatio-Temporal Epidemiology)
Population exposure and sensitivity to heat

- Focus on Houston, TX
- Quantitative analysis of spatial and temporal patterns of vulnerability indicators
- Incorporate high-resolution numerical models, satellite data, parcel data, census data, survey data and health outcomes into a spatial statistical model for public-health end-points
Land surface model simulations of Houston’s urban heat island.

- Employ the offline version of the Noah LSM, called “HRLDAS”; 1-layer UCM
- Driven by the NLDAS-II forcing fields
- Use of 30-m Nat. Land Cover Database to specify 3 urban types
- Treatment of urban land use fraction explicitly with NUDAPT (Ching et al. 2009)
 - This 2D treatment provides more realistic spatial depiction of heat island over the default 3-category urban “look up table” treatment (e.g., Salamanca et al. 2011)
- Performed 21 years of 1-km simulations; daily summary fields compiled from hourly output and used for vulnerability mapping
- Validation versus weather stations and MODIS imagery
1-layer Urban Canopy Model

Kusaka et al. (2001)
Simulations of the Houston Heat Island
August 2010 Average 2-m Temperature

Daytime

August 2010 Average Daily Cycle of Air Temperature over Houston, TX

Nighttime

August 2010 Average Daily Cycle of Air Temperature over Houston, TX
Local Scale: HRLDAS vs. Wx Obs

HNWA, Lat=30.0394, Lon=95.6739, LU=5, N=30

HALC, Lat=29.901, Lon=95.326, LU=31.0599, N=27

BAYP, Lat=29.6958, Lon=95.4992, LU=31.1316, N=30

HROC, Lat=29.7353, Lon=95.3156, LU=32.3181, N=30

DRPK, Lat=29.6697, Lon=95.1286, LU=31.1351, N=30
Day-minus-Night LST: 2006 July/Aug
48-day composite

HRLDAS

MODIS
Can we reduce uncertainty by adding complexity to our simulations?
Next Steps
Improving representation of urban land cover

- **Data source:**
 - Building information from the Houston city housing database ~1.36 million parcel records;
 - ~1.07 million residential buildings
 - ~188,000 commercial

- Use the database to determine the typical house properties by neighborhood

- Develop typical wall thermal and radiative properties by reconstructing wall types

- Added a scenario creation methodology to simulate different future scenarios – allows for policy simulations (e.g. insulation improvements, albedo change, etc.)

- Presently validating the data against the NUDAPT dataset.

Johan Feddema, U. Kansas
Parameterizing urban systems for use in models

Johan Feddema, U. Kansas
Future heat stress

NWS index; Mid-century climate simulations

Oleson et al. (submitted to Climatic Change)