High-resolution simulations of the Urban Heat Island

Andrew Monaghan, Michael Barlage, Leiqiu Hu, Nathan Brunsell, Johannes Feddema, Keith Oleson, Olga Wilhelmi and Steve Sain

24 October 2013
Zooming in: From regional to local

(Oleson et al., 2013)
Land surface model simulations of Houston’s urban heat island.

- Employ the offline version of the Noah LSM, called “HRLDAS”; 1-layer UCM
- Driven by the ~14-km NLDAS-II forcing fields
- Use of 30-m Nat. Land Cover Database to specify 3 urban types
- Treatment of urban land use fraction explicitly with NUDAPT (Ching et al. 2009)
 - This 2D treatment provides more realistic spatial depiction of heat island over the default 3-category urban “look up table” treatment
 - Performed 1-km simulations; half-hourly output; 8 experiments; 10 years each
- Validation versus MODIS imagery and weather stations

NUDAPT building fraction →

(Burian et al. 2003)
1-layer Urban Canopy Model

Kusaka et al. (2001)
Simulations of the Houston Heat Island
August 2010 Average 2-m Temperature

Daytime

August 2010 Average Daily Cycle of Air Temperature over Houston, TX

Nighttime

August 2010 Average Daily Cycle of Air Temperature over Houston, TX

(Courtesy J. Boehnert, NCAR)
HRLDAS Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Description</th>
<th># Urban categories</th>
<th>NUDAPT?</th>
<th>Irrigated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Vegetation only</td>
<td>0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B1</td>
<td>1-category urban</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>C1</td>
<td>3-category urban</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>D1</td>
<td>3-category urban with NUDAPT</td>
<td>3</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

(Monaghan et al., in preparation)
Validation of HRLDAS Simulations
Validation Methodology

1. Employ remotely-sensed land surface temperature (LST) from NASA MODIS
 - Used MODIS instruments onboard satellites “Terra” and “Aqua”
 - 10 years of 4x daily data: 2003-2012
 - Advantages: Spatially comprehensive, lots of data points
 - Disadvantages: Cloud impacts, view angle biases, radiative temperature

2. Employ 17 weather stations from short-term EPA field program.
 - Installed throughout city
 - Hourly data, 2005-2006
 - Advantages: Air temperature, better temporal resolution, no cloud problem
 - Disadvantages: Short record, cannot cover entire city
Using MODIS for validation: Caution!

(Hu et al., submitted)
MODIS Terra LST Versus HRLDAS T_{rad}

MODIS:

(Monaghan et al., in preparation)
Correlation of MODIS LST and HRLDAS T_{rad} by Experiment

Veg = Vegetated areas
CU: Commercial urban
HU: Heavy urban
LU: Light urban

A1: Vegetation Only
B1: 1-urban category
C1: 3-urban categories
D1: 3-urban categories, 2-d urban fraction
A2: A1 + irrigation
B2: B1 + irrigation
C2: C1 + irrigation
D2: D1 + irrigation

(Monaghan et al., in preparation)
Correlation Statistics for Experiments versus 17 urban weather stations

August 2006

A1: Vegetation Only
B1: 1-urban category
C1: 3-urban categories
D1: 3-urban categories, 2-d urban fraction
D2: D1 + irrigation

(Monaghan et al., in preparation)
Next Steps: Toronto
Toronto SIMMER simulations

- Working with Claus Rinner and Heather Hart, Ryerson U. to integrate high quality Toronto land use data

1-m Quickbird-based map (toronto.ca/open; courtesy C. Rinner)
What have we learned?

- **Offline urban heat island simulations** can provide long-term records of urban extreme heat exposure with good accuracy but without the huge expense of running simulations coupled to an atmospheric model.

- **Satellite data**, when used with care, can be used to validate such simulations.

- **Urban morphology matters.**

- **Green matters (a lot!).**
Extra Slides
Example datasets used in SIMMER

- Daily mortality counts 1999-2006
- Race and ethnicity
- Temperature, 1999-2006
- Median house value
- Mean construction date
- Central Air Conditioning
Local Scale: HRLDAS vs. Wx Obs
Day-minus-Night LST: 2006 July/Aug
48-day composite

HRLDAS

MODIS
Can we reduce uncertainty by adding complexity to our simulations?
Breakdown of HRLDAS Trad components
Correlation of MODIS LST and HRLDAS T_{rad} by Experiment

Veg = Vegetated areas
CU: Commercial urban
HU: Heavy urban
LU: Light urban

A1: Vegetation Only
B1: 1-urban category
C1: 3-urban categories
D1: 3-urban categories, 2-d urban fraction
A2: A1 + irrigation
B2: B1 + irrigation
C2: C1 + irrigation
D2: D1 + irrigation

Blue: Low correlation
Red: High correlation

(Monaghan et al., in preparation)