Adverse ceiling and visibility (C&V) conditions seriously test the general aviation pilot’s judgment. When deteriorating conditions go unrecognized, and the threat of a sudden drop in ceiling or visibility becomes alarmingly real, the pilot is all too often unprepared and unable to quickly identify an escape route. The threat and its consequences are further amplified when complex, rising terrain plays a role in the flight environment. Spatial disorientation, loss of control, controlled flight into terrain, and forced landings are some of the recurring consequences of C&V hazards. These hazards illustrate C&V’s overall role as a contributing factor in over 35% of all weather-related accidents in the U.S. civil aviation sector.

Improved national-scale analyses and forecasts of C&V and new tools to present this information to pilots, weather briefing staff and others are key to improving the C&V safety record.

This research is funded by the Federal Aviation Administration’s (FAA) Aviation Weather Research Program. The National Center for Atmospheric Research (NCAR) leads the FAA/AWRP National Ceiling and Visibility (NCV) product development team.

NCAR’s continental U.S. (CONUS) C&V analysis product displays current ceiling, surface visibility and flight category information based on real-time METAR and satellite data, registering any available sub-hour analysis updates every 5 minutes. The color-contoured display presents current conditions in terms of aviation-critical thresholds with options for user-selectable overlays of individual METAR values and cloud coverage.
NCAR is also developing a C&V analysis product for Alaska utilizing an approach that combines use of data from surface observations, weather cameras, satellites and models to help overcome data scarcity challenges in this region.

NCAR’s prototype 1-10 hour C&V forecast product (CVF) is being developed for CONUS airport locations. CVF is updated hourly as an optimized blend of independent forecast components including the RAP model, NWS LAMP operational forecasts, and NCAR regression-based statistical forecasts.

Field Research in Ceiling and Visibility
Improved forecasting of ceiling and visibility conditions is critically dependent upon our understanding of the underlying physical processes at work. In past years NCAR has maintained a fully instrumented field site supporting ongoing studies of the formation and evolution of fog and low ceiling events. The site is located on the grounds of Brookhaven National Laboratory on east-central Long Island, New York. Research focused on the formation of fog of several types – including radiation, precipitation-related, and advection fog.

Instrumentation at the site included a vertical array of temperature, humidity and wind sensors from the base to the top of an existing 88 m meteorological tower. Visibility, temperature and moisture flux, radiation flux divergence, fog droplet size spectrum and other measurements were made at other levels. Surface instrumentation included a ceilometer and a profiling microwave radiometer. The site is co-located with NWS rawinsonde and NEXRAD operations which provided excellent supplementary information.

Airport Terminal Area Ceiling and Visibility
Adverse C&V conditions also impose critical restrictions upon the rates of traffic flow into and out of major airports across the country, and these restrictions, in turn, strongly affect the capacity and efficiency of U.S. air traffic as a whole.

NCAR staff worked with colleagues from MIT/Lincoln Laboratory to develop and display more accurate forecasts of operationally significant changes in ceiling height and visibility near major airports in the Northeastern U.S. This recent effort follows the 2004 completion of the San Francisco Marine Stratus Forecaster Display system, which provides forecasts of the time that low clouds and fog will clear the approach to the San Francisco Airport. The system was transferred to the NWS and is currently running operationally.

The San Francisco Marine Stratus Forecaster Display (above) is used operationally by the Center Weather Service Unit (CWSU) forecaster, WFO aviation forecaster, FAA traffic managers, and airline meteorologists. The left side provides displays of sensor data, used in the forecast models. There are four primitive forecast models and a consensus forecast. The right side provides the forecast information. The historical probability of success is provided as a measure of confidence in the consensus forecast.

For More Information, Contact:
Paul Herzegh 303-497-2820 herzegh@ucar.edu
NCAR, Research Applications Laboratory
PO Box 3000 Boulder CO 80307-3000
www.ral.ucar.edu 303-497-8401 fax