Introduction of Source Term Estimation method for radioactive materials

Dr. Ryohji Ohba (Nuclear Safety Research Association)

Ref: Hayakawa et al., Proceedings at annual meeting of Japan society of nuclear energy, 2011 (in Japanese)
Background

Environmental and CBRN issues
- Source position, release volume and time: Unknown
- Observed data: Concentration

Nuclear accident
- Source position: Known
- Release volume and time: Unknown
- Observed data: Radiation dose of Gamma ray
Diffusion model

- Data of each particle

Advection term (Output data from meteorological model)

Diffusion term (Output data from meteorological model)

Depletion & Deposition term

Present position
Released time
Released intensity
STE technique of Lagrangian Particle model (2)

STE method

- Calculation variables

Influence function

\[F_i = \sum \phi_{ij} q_i \]

Calculated data

Observed data

Residual norm

\[\pi = \sum (F_i - f_i)^2 \]

Determine \(q_i \) of released intensity, so as to minimize \(\pi \)
Calculation conditions

- Area: Downtown in Tokyo
- Wind: North to South 1m/s
- Observed data: Simulated results
 (Released intensity: decreased from 1 to 0 during 30 min.)

Calculated results by RAMS&HYPACT codes
Test calculation (2): Source position and observation points

Point 1 ~ 4
Point 6 ~ 10
Point 11 ~ 15
Point 16 ~ 22
Test calculation (3): Wind vector around buildings
Sensibility study on noise of observed data

放出量同定精度

Test calculation (4): Accuracy of released intensity
Sensibility study on noise of observed data

Test calculation (5): Accuracy of radiation dose calculated by estimated released intensity
Conclusion

- Result
 - Development of STE method based on radiation dose
 - Confirmation of accuracy for released intensity

- Future subjects
 - Improvement of released intensity at initial stage
 - Validation study with wind tunnel and field data
 - Improvement of dry and wet deposition model

Application to emergency response system
拡散予測精度の向上（4次元同化）

\[
\tilde{q}_i = q_i + (q_{m_j} - q_i) \cdot (\phi_{ij} / \phi_{mk})
\]