Maintenance Decision Support System (MDSS)
Federal Prototype Activities

Kevin R. Petty
William P. Mahoney

National Center for Atmospheric Research (NCAR)

MDSS Stakeholder Meeting #9
NWS Training Center
Kansas City, MO
18 September 2007
Road Temperature Model Evaluation

Issue – SNTHERM, a 1-D energy balance model used in the prediction of road temperature and road condition, is no longer supported

Goal – to find a replacement model for SNTHERM

Models:

1. FASST - Fast All-season Soil Strength
2. METRo - Model of the Environment and Temperature of Roads

Criteria:

Performance
Code Stability
Efficiency
Support
Ease of use
Road Temperature Model Evaluation

Clear Case:
8 November 2006

Perfect Prognosis Approach
Road Temperature Model Evaluation

Clear Case: 8 November 2006
Forecast Driven
Rain Case: 11 November 2005
Perfect Prognosis Approach
Road Temperature Model Evaluation

Snow Case: 28 November 2006
Perfect Prognosis Approach
Road Temperature Model Evaluation

METRo - Model of the Environment and Temperature of Roads

Pros:
- Good performance
- Easy to acquire and set up, even for novice users
- Good support from developers (Environment Canada)
- Expanding community of end users

Cons:
- Processing time (uses industry standard Extensible Markup Language [XML] for data processing) – roughly 2.0 seconds
 48 hour point forecast

Online Wiki for more information:

http://documentation.wikia.com/wiki/METRo
Enhanced MDSS Display Capabilities

- Ability to display and animate gridded products
 - National Radar Mosaic
 - Visible Sat Image
 - IR Sat Image
 - WV Sat Image

- Data are loaded in netCDF, an emerging standard meteorological format
Enhanced MDSS Display Capabilities

- Real-time Automated Vehicle Location (AVL) data.
 - Location
 - Speed
 - Direction
 - Treatment
 - Observed Weather
 - Observed Road Cond.
Enhanced MDSS Display Capabilities

- Dynamic base maps
 - Roads
 - Political Boundaries
 - Topographic Detail
 - Pan
 - Zoom
Enhanced MDSS Display Capabilities

• New short-term tactical alerts (3-hr)
 ○ Frozen precipitation
 ○ Road Segment predicted to drop below freezing with precip occurring and/or road wet
Enhanced MDSS Display Capabilities

• Display more localizable than previous versions
• Configuration files are separate from application source code (i.e., recompilation not required to move display from one state to another)
• Nearly all layer configuration specified in one XML file
• Geographic data requested using Web Map Service (WMS) protocol
• Road segments and alert zones specified in Shapefile format.
System Replay/Archive

- Data archive selector allows event replay capability
 - 5 day storage of radar and satellite data
 - 1 year archive of MDSS forecasts
MDSS 2006-07 Colorado Demonstration

National Weather Service Data
- NAM
- GFS model
- MAYMOS
- METARS
- SYNOP

Supplemental Data
- Rapid Update Cycle (RUC) Model
- RWIS Data
 - E-470
 - Colorado DOT
 - City of Denver

Road Weather Forecast System
- Data Ingest
 - Forecast Module A
 - Forecast Module B
 - Forecast Module C
 - Forecast Module D
 - Forecast Module N
 - Forecast Integrator
 - Post Processor
 - Forecast Product

Road Condition and Treatment Module
- Road Temperature Prediction Model
- Chemical Concentration Algorithms
- Rules of Practice for Anti- and Deicing

Road Weather Predictions and Plow Route Specific Treatment Recommendations
MDSS 2006-07 Colorado Demonstration

- Supported the City and County of Denver and the E-470 Public Highway Authority
 - MDSS road weather forecasts and treatment recommendations
 - Limited supplemental forecasts/updates (within 24 hrs of significant event)
 - MDSS performance
 - Synoptic (large scale) situation
 - Key parameters (snowfall amounts, 32°F road temps, etc.)
MDSS 2006-07 Colorado Demonstration

• Between 1 October 2006 and 1 May 2007 – 16 separate snow events
• Two major winter storms within 2 weeks
 ○ 2 – 3 feet in Denver Metro (20 December)
 ○ ~1 foot in Denver Metro (28 December)
• Some events exhibited variable conditions over relatively short distances
• MDSS – in general, good forecast performance – handles heavier snowfall events better than light events.
MDSS 2007-08 Colorado Demonstration

• Run old and new displays in parallel
• Add new forecast sites for City of Denver – based on new sensors
• Bug fixes and/or nominal system changes, as necessary