Issues in Tactical Support for MDSS

John Mewes, Ph.D.
Meridian Environmental Technology, Inc.
PFS MDSS Architecture

Maintenance Actions

- Modifications to Standard Practices
- Results Expected from Proposed Treatment

- Road Condition Observations / Analyses
- Propose Alternative Treatment
- 'Optimal' Treatment & Expected Results

Resources Used / Available

- Roadway & Environment Characterization Database
- RWIS
- High Resolution Gridded Weather Forecast Database
- Maintenance Practices and Activities Databases

MDSS Processing & Integration System

Observed & Analyzed Roadway State Databases

Available Resources Database

Database

- Maintenance Practices and Activities Databases
- High Resolution Gridded Weather Observations Database
- High Resolution Gridded Weather Forecast Database
- Roadway & Environment Characterization Database

Legend

- BLUE: Forecast / Theoretical
- RED: Real-Time / Actual
- BLACK: Applies to Both
- SOLID: Automatic or Semi-Automatic Process
- DASHED: User-Driven Process
Maintenance Actions

Optimal' Treatment & Expected Results

Maintenance Practices and Activities Databases

MDSS Processing & Integration System

WEATHER INPUTS

High Resolution Gridded Weather Forecast Database

High Resolution Gridded Weather Observations Database

MAINTENANCE ACTIVITIES

'Maintenance Actions & Expected Results

Observed & Analyzed Roadway State Databases

ROAD CONDITION OBSERVATIONS
Tactical Support: Weather Information

- **Wintertime precipitation observations**
 - real-time information on intensity / rate lacking
 - significant distances between observations
 - consistency between sensors
 - QC needed, but difficult

- **Radiation information**
 - very few observations available, vitally important

- **Drifting snow**
 - Not well observed by existing networks
 - Not easily modeled due to lacking info on snowpack conditions

- **Weather forecast update frequency**
 - forecast needs to reflect current conditions, project evolution
 - labor intensive if done by forecaster, difficult to automate in light of lacking precipitation observations
Tactical Support: Road Condition Information

- **RWIS**
 - Limited coverage
 - Accuracy is suspect in some cases, QC difficult
 - Some conditions more usable than others

- **Agency**
 - Existing feeds don’t update frequently
 - Can still get time-lagged value using pavement model
 - Dictionary conversions, spatial variability

- **MDC/AVL**
 - Consistency of data entry between drivers
 - Picking most appropriate condition out of varying entries
 - Meshing with maintenance activity information, i.e. don’t want to undo the corresponding maintenance action in the model
Tactical Support: Maintenance Data Collection

- **Consistency of entry**
 - We presently must rely on the driver to input some information, such as lane, material, and/or application rate.

- **Interfacing with truck**
 - Gathering data from spreader controller can be difficult.
 - Sensing plow positions.

- **Standards would be beneficial**
 - At the controller interface.
 - At the point of distribution outside the system.

- **Interpretation is complex**
 - MDC/AVL yields GPS-based measurements of conditions.
 - Agencies generally want aggregated information for maintenance routes.
In-Vehicle MDSS

(IWAPI system working with PFS MDSS)

Two way MDSS - MDC / AVL data flow maximizes tactical value
Tactical Support: MDSS Processing

- Keeping up with the flow of data
 - Weather information
 - New observations (nearby METAR, RWIS, radar data, etc.)
 - New forecasts
 - Road condition information
 - Prioritization needed. If a report comes from a user, push it through quickly. If not, push it through on a (frequent) schedule.
 - MDC/AVL information
 - Always coming in, piece by piece. How often does MDSS readjust to account for this changing picture?
 - How much of a maintenance run should be finished before MDSS processes its effects?