Rules of Practice

- Automation Overview
- Snow Depth / Chemical Concentration
- Automating FHWA Guidelines
- Supported Decisions / Treatments
- Summary
Road Condition-Treatment Algorithms

- Weather Variables
- Road Snow Depth
- Chemical Concentration
- Pavement Temperature
- Rules of Practice
- Treatment Plan
 - Chemical Application
 - Plowing

- Road
- Snow
- Depth
- Chemical
- Application
- Rules
- Practice
- Plowing
Estimating Snow Depth

Chemicals dilute
- Precipitation rate slowly become ineffective

Plowing
- Removes loose snow
- Anti-icing <0.5" remains
- De-icing leaves compacted snow

Compaction
- Water Content

Free-Falling
- Snow Depth

Chemicals
- NaCl
- MgCl
- CaCl

Melting
- Pavement Temperature

Traffic
- Blows snow/chemicals off road
- Compacts loose snow
- Reduces treatment effectiveness

Winds
- Blow snow on and off the road
Estimating Chemical Concentration Dilution

- Chemical Type: NaCl, MgCl, CaCl
- Spread Rate
- Road Splatter
- Traffic Splatter
- Liquid Runoff
- Liquid Water Dilution
- Chemicals Melt Frozen Precipitation
- Chemicals Fail (new treatment needed)

Reduces Chemical Concentration

Reduces Overall Available Chemicals
Automating Chemical Dilution

• Base decisions on chemical dilution curves

 ![Phase Diagram for Sodium Chloride](image)

 • C++ Algorithm (modular code with flexible interface)
 - Ingest snow depth, pavement temperature, precipitation forecast
 - Determines concentration based on CRREL dilution algorithm
 - Currently only NaCl, but new chemicals easily added
Automating Treatment Recommendations

- Base decisions on FHWA Anti-icing guideline tables

- C++ Algorithm (modular code with flexible interface)
 - Identify potential treatment trigger points
 - Level of snow on road
 - Ice on road
 - Determines consensus treatment from multiple time steps
 - Iteratively update road conditions based on treatment
 - Maintain LOS past end of storm
 - User-adjustable parameters
 - Acceptable road conditions (triggers)
 - Preferred treatment types
Rules of Practice – Automating FHWA Guidelines

Chemical Treatment (lbs/2-lane mile)

Road Surface Temperature (degC)

Precip Type

Precip Intensity

Nominal Treatment Rate

No Treatment
Rules of Practice – Integrating Forecasts to Optimize Treatment

- Maximum of all treatments
- Average of all treatments

Chemical Treatment (lbs/2-lane mile)

Road Surface Temperature (degC)

No Treatment

No Treatment
Rules of Practice - Example

TP (°C)

Snow Depth (in)

Chem Solution

Effective

Failure

Treatment 400 lbs/lane-mile NaCl
Rules of Practice – Supported Treatments

• **Chemicals**
 – Initially only NaCl
 – Algorithm allows new chemicals to be added easily
 – User controls preferred chem type, min/max application rates

• **Plowing**
 – User controls trigger point (default is 3” snow depth)

• **Sand**
 – Only as general guidance (no specific rates)

• **Pre-treatment**
 – All chemical treatments begin prior to the “trigger point”
 – Default offset is ½ of the expected route time
 – Treatment guidance for first treatment could indicate that the chemicals may be applied up to 12 hours prior to the event start.
Rules of Practice – Supported Conditions

<table>
<thead>
<tr>
<th>Storm Conditions</th>
<th>Supported?</th>
<th>Recommended Treatments</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precip Type</td>
<td>Temp Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>-10 to 0* degC</td>
<td>Yes</td>
<td>Chemicals and Plowing</td>
</tr>
<tr>
<td>Snow</td>
<td>< -10 degC</td>
<td>Yes</td>
<td>Plowing</td>
</tr>
<tr>
<td>Snow</td>
<td>Transition below -10 degC</td>
<td>Yes</td>
<td>Chemicals -> Plow Only</td>
</tr>
<tr>
<td>Snow</td>
<td>Transition above 0* degC</td>
<td>Yes</td>
<td>Chemicals -> No Action</td>
</tr>
<tr>
<td>Freezing Rain</td>
<td>Any</td>
<td>Partially</td>
<td>Chemicals</td>
</tr>
<tr>
<td>Black Ice</td>
<td>Any</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Blowing Snow</td>
<td>Any</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

0 degC represents a threshold “freezing point” no treatment value
Potential Short-term Enhancements

- Support additional chemicals (CaCl₂, MgCl₂)
Chemical Dilution Timeline

<table>
<thead>
<tr>
<th>Weather</th>
<th>Road Surface</th>
<th>Chemical Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td></td>
<td>Chemicals are applied</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road splatter – some chemicals are lost immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traffic splatter – the higher the level of traffic the more chemical levels are reduced</td>
</tr>
<tr>
<td>Rain</td>
<td></td>
<td>Liquid runoff – dependent on the pitch of the road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid water dilution – reducing solution volume</td>
</tr>
<tr>
<td>Snow</td>
<td></td>
<td>Chemicals melt frozen precipitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid runoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid water dilution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentration weakens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemicals fail (new treatment needed)</td>
</tr>
</tbody>
</table>