Scientific and Technical Advancement

Bob Barron (RAL/AAP), Al Yates (RAL/AAP), Cory Morse (RAL/AAP), Deirdre Garvey (RAL/AO), Larry Cornman (RAL/AAP), Kent Goodrich (RAL/AAP), Steve Cohn (EOL/ISF), Marcia Politovich (RAL/AAP), Al Rodi (University of Wyoming), Paul Prestopnik (RAL/WSAP), Andrew Weekly (RAL/HAP), Gary Cunning (RAL/WSAP), Aaron Braeckel (RAL/AAP), Inger Barron (RAL, OA), Tor Mohling (RAL, AO), JEff Stolte (RAL/OA), Wes Wilson (RAL/AAP)

For Juneau Airport Winds System. Although Juneau is the capital of Alaska, the city is only accessible by air or sea. Safe, reliable air transportation is therefore critical but difficult to achieve given Juneau's location at the end of the Gastineau Channel with mountains on either side of the water. Severe turbulence induced by this complex terrain has led to a number of incidents and near-accidents at the airport and frequently resulted in the closure of runways when wind speeds were judged to be hazardous. In response to concerns for safety and the need for greater operational efficiency, the Federal Aviation Administration sought help from NCAR in 1996 to determine the feasibility of creating and implementing a wind hazard warning system. When early studies showed that significant improvements could be made, a full-scale research, development, and technology transfer program was initiated. Early efforts focused on understanding local meteorology as well as the specific nature of turbulence in the airport environment. Observational data were critical to this effort, and thus anemometers and wind profilers were acquired and deployed, and instrumented research aircraft were flown to collect data in three field programs. Field project data were used to develop algorithms to turn sensor data into real-time warnings that are provided to users in displays specifically designed to help them make decisions regarding safe flight. Following extensive evaluations by the FAA, the agency certified the Juneau Airport Winds System (JAWS) as a fully operational turbulence warning system in July 2012. This is the first FAA-approved terminal-area turbulence warning system to be deployed in the U.S.