

Near Median Density Index

An order statistics approach to assessing ensemble forecast uncertainty

Keith F. Brill I.M. Systems Group, Inc., and NOAA/NWS/NCEP/Weather Prediction Center

Motivational Considerations

- 1. Forecasters now provide Decision Support Services (DSS) routinely, which can be Impact-based (IDSS).
- 2. Forecasters must be ready to communicate the degree of forecast uncertainty as part of DSS.
- 3. Forecasters must identify potential forecast problems quickly (where and when does mentionable uncertainty exist in the guidance).
- 4. Forecasters still issue (and users still want) deterministic forecasts.

Ensemble spread measures uncertainty, right? Yes, *but*...

- 1. Spread is not a resistant statistic---it is sensitive to outliers.
- Sometimes spread can be "high"¹, but the ensemble has a strong *central tendency*² and there is *probably* no better forecast than the ensemble mean or median. Call this "typical uncertainty".
- 3. Sometimes spread is "high", but the ensemble has a weak *central tendency* and the mean or median is questionable. **Call this "split-decision uncertainty".**

Is it typical or split-decision uncertainty? The forecaster likely needs to know!

¹"High spread" is defined as spread values exceeding one's tolerance for the forecast error for a parameter. "Low spread" is spread that is not high.

²"Central tendency" refers to the degree to which ensemble values for a scalar parameter are clumped into a single mode in their frequency distribution.

The Near Median Density Index (NMDI) defined:

Let F(x) be the cumulative distribution function (CDF) for the ensemble order statistics¹ at a point

 $F^{-1}(p)$ is the inverse CDF that returns a value x for given cumulative probability, p.

Let $\sigma_r = [F^{-1}(.96) - F^{-1}(.04)] / (2\sqrt{3})$, a resistant spread estimate.² Let $\upsilon = F^{-1}(.50)$, the median.

NMDI =
$$F(u + \frac{1}{4}\sigma_r) - F(u - \frac{1}{4}\sigma_r)$$
, given $\sigma_r > 0$.

From the definition: 0 ≤ NMDI < 1

High spread and *low NMDI* indicate split-decision uncertainty, but how low is "low" for NMDI?

Let's look at this index for several analytic probability density functions (PDF).

¹The ensemble member values for some forecast parameter *x* sorted from lowest to highest.

²Inspired by the standard deviation formula for the uniform distribution.

Normal PDF: NMDI \approx .2 \rightarrow Typical Uncertainty

Bimodal PDF: NMDI $\approx .03 \rightarrow$ Split-Decision Uncertainty

Now, let's find a threshold value . . .

Table of Analytic PDFs

The exponential PDF has relatively strong central tendency (typical uncertainty) according to NMDI even though σ_r under estimates actual σ .

For normally or near normally distributed data, σ_r gives a good estimate of the actual σ , and NMDI values can be regarded as indicating typical uncertainty.

The uniform PDF is the basis for σ_r and suggests a threshold value (~.15) below which NMDI indicates split-decision uncertainty.

For a bimodal PDF, σ_r beneficially under estimates σ driving the NMDI lower to strongly indicate split-decision uncertainty.

PDF name	PDF description	Median ບ	Mean µ	σ	σ_r	α <u></u> σ σ X 100%	NMDI
Exponential	Parameter = 1	.6931	1	1	.9174	- 8.26%	.2314
Normal	Standard	0	0	1	1.0108	+ 1.08%	.1995
Binormal (Toth and Szentimrey 1990, J. C <i>limate</i>)	Right Skewed Mode = 0 Left σ = .473858 Right σ = 1.42157	.6123	.7562	1	.9851	- 1.49%	.1882
Uniform	Interval $\begin{bmatrix} 0, 2c\sqrt{3} \end{bmatrix}, c > 0$	c√3	c√3	С	.92 <i>c</i>	- 8.00%	.1328
Double Triangle	Interval [0,2] Two adjacent isosceles ∆s of area ¹ / ₂ each	1	1	.5401	.4619	- 14.48%	.0267

Using NMDI with Spread

- 1. Assume spread meets the *high spread* criterion.*
- NMDI ≥ .15 indicates typical uncertainty and the ensemble mean or median is probably the best forecast.
- 3. NMDI < .15 indicates *split-decision uncertainty.* The lower the value of NMDI below the .15 threshold the less trustworthy the ensemble mean or median.
 - a. Suggests importance of consulting other guidance or ensemble clusters
 - b. Heightens importance of communicating the uncertainty
 - c. Suggests just waiting for the next forecast cycle

^{*}Using the NMDI alone false alarms where spread is low.

Example Application for a Heat Index Forecast

Using the 20-member NCEP GEFS

Initial time & date: 00 Z 17 July 2019 Valid time & date: 00 Z 22 July 2019

F120 Ensemble Mean Heat Index (HI, deg F) is contoured (brown, labeled, interval=4)

Resistant spread (F) is color filled (see color bar)

Low NMDI areas are outlined by yellow contours enclosing lower red and magenta contours

Highlight:

Western IA and eastern NE are areas of noticeable splitdecision uncertainty

Midwest-Plains Heat Wave

EC+GEFS MEAN HeatIndex (F, BROWN CNTRS)

190722/0000V120 HI RESISTANT SPRD (F, FILL) NMDI: .15=YLLW .10=RED .05=MGNTA (CNTRS)

ND ATMOS

IT OF COM

Example Application for a Precipitation Forecast

Using the 26-member NCEP SREF

Initial time & date: 03 Z 13 July 2019 Valid time & date: 18 Z 14 July 2019

F39 Ensemble mean 6-h QPF (inch) is color filled (see color bar)

Resistant spread (inch) is shown by labeled brown contours at interval=.2

Low NMDI areas are outlined by yellow contours enclosing lower red contours

Highlights:

- Noticeable region of split-decision uncertainty for northern portion of heavy (>.5 inch) QPF area
- Split-decision uncertainty tends to be on the periphery of QPF areas where placement is often indecisive

Hurricane Barry Case

190714/1800V039 MEAN 6-H QPF (INCH, FILL) NMDI .15=YLLW .10=RED .05=MGNTA CNTRS

ND ATMOSA

Summary

- A *resistant spread* can be computed from ensemble order statistics.
- High spread with strong central tendency indicates *typical uncertainty*; so, the ensemble mean or median is *probably* the best forecast.
- High spread with weak central tendency indicates *split-decision uncertainty* which may call for human intervention in the forecast process and more attention to conveying the degree of uncertainty for DSS.
- The Near Median Density Index (NMDI) along with ensemble spread provides a way to distinguish between typical and split-decision uncertainty.

Summary

- A *resistant spread* can be computed from ensemble order statistics.
- High spread with strong central tendency indicates *typical uncertainty*; so, the ensemble mean or median is *probably* the best forecast.
- High spread with weak central tendency indicates *split-decision uncertainty* which may call for human intervention in the forecast process and more attention to conveying the degree of uncertainty for DSS.
- The *Near Median Density Index (NMDI)* along with ensemble spread provides a way to distinguish between typical and split-decision uncertainty.

THE END Thank You