

MOGREPS Ensemble Systems

Ken Mylne

Head of Verification, Impacts and Post-Processing, Weather Science

Met Office, Exeter

≫MetOffice Outline

An integrated ensemble-based NWP system

- MOGREPS-G Global Ensemble
 - A few user application tools
- MOGREPS-UK Convective Scale Ensemble
- IMPROVER blended probabilistic post-processing
 - More info on posters

Deterministic models, global and UK, remain an important part of our NWP, but are heavily integrated with MOGREPS through hybrid 4D-Var, and are blended in IMPROVER.

Two model Strategy: Global and UK Strategy defined ~10 years ago, almost complete

Met Office NWP Configurations: 2019

Global NWP:

- 10/20km deterministic/MOGREPS-G (36M)
- 70 vertical levels (80km top)
- -Hybrid 4D Variational Data Assimilation
- Forecasts to T+48 or T+192hr every 6 hrs

UK NWP:

- 1.5/2.2km deterministic/MOGREPS-UK
- 70 vertical levels (40km top)
- Hourly 4DVar Analysis and 12h forecast
- Forecasts to T+54h every 3hr
- MOGREPS-UK to T+120 updated every hour (18M)

Brief description MOGREPS-G

- 36-member time-lagged Global ensemble with UM at ~20km grid resolution
 - 18 members run every 6 hours with last two cycles combined to provide 36 member forecasts
 - Forecasts to 7 days
- Initial perturbations by ETKF with localisation
- Stochastic physics by SKEB and SPPT (details to follow)
- Wide-ranging post-processing applications...

Major Snow event, Mar 2018

Probability 24 hour snowfall > 1cm

High probabilities showing up over the North Sea and eastern side of the country at a <u>6 to 7 day lead time</u>,

signalling the first snow of this cold spell.

MOGREPS-G 24 hour snowfall accumulation (liquid water equivalent) probability > 1mm Cycle Time: 06Z on Tue 20/02/2018 Validity Time: 06Z on Tue 27/02/2018 (T+144 - T+168)

MOGREPS-G probability forecast evolution

Probability 24 hour snowfall > 5 cm, valid 12:00 Thu 1st Mar to 12:00 Fri 2nd March 2018

6 day forecast 5 day forecast 4 day forecast 3 day forecast 2 day forecast

MOGREPS-G probability forecasts for different snow amounts (SW snow event) Valid 12:00 Thu 1st Mar to 12:00 Fri 2nd March 2018 – 3 day lead time

Viewing probabilities for several snowfall thresholds helps pinpoint the areas most at risk

MOGREPS-G first guess warnings for snow

MOGREPS-G <u>first-guess</u> warnings Issued on Tue 27 Feb and valid on Wed 28th Feb (left), Thu 1st March (middle) and Fri 2nd March (right)

MOGREPS-G is not resolving the heaviest snow showers in the NE, but is capturing the frontal snowfall in the south much better. The UKV (1.5 km) and MOGREPS-UK (2.2 km) are able to help with the showers.

Hurricane Irma 6th 0<u>0z run</u>

Plots c/o Helen Titley

Tropical cyclone tracking and storm-following meteograms

vton-Ungku Omar d

Capability to downscale 4.4km nested TC ensemble Hurricane Irma 6th 00z run

OGREPS-G-18: Forecast tropical storm tracks

24-48h

- 144-168h

Observations

- Top = 5 day forecast for 4.4 km Bottom = 7 day MOGREPS-G forecast (18 not 36 members)
- 5v7 day forecast complicates direct comparison of plots.
- Actual track is overlaid in black
- Tracks broadly similar
- Propagation speed better in 4.4 km ensemble (compare location of purple lines)
- PMSL intensities in 4.4 km ensemble encompass observed value after T+48.

"Usual" peak 10 m wind

MOGREPS-G-18: Forecast tropical storm strike probability for IRMA from 00UTC 06/09/2017

MOGREPS-G latest 18 members: Tropical Cyclone storm-following meteogram IRMA (17.2N 60.4W) from 00UTC 06 September 2017

Met Office Regime Analysis and the Decider tool

Seamless ensemble clustering:

Monthly with Glosea; Medium-Range using MOGREPS-G and ECMWF ENS

	Wed 2 Dec	Thu 3 Dec	Fri 4 Dec	Sat 5 Dec	Sun 6 Dec	Mon 7 Dec	Tue 8 Dec	Wed 9 Dec	Thu 10 Dec	Fri 11 Dec	Sat 12 Dec	Sun 13 Dec	Mon 14 Dec	Tue 15 Dec	Wed 16 Dec	Regime Descriptions (UK)	Historic Occurrence N/D/J
Regime 1											2			2		Unbiased NWly	2.0%
Regime 2											4	4	2			Cyclonic W-SWly, returning Pm airmass	2.8%
Regime 3								2	2		4		4			Anticyclonic SWly, ridge over N France	2.3%
Regime 4									2	2		6		2	4	Unbiased Wly	2.7%
Regime 5																Unbiased S-SEly, high over Scandinavia	2.7%
Regime 6																Anticyclonic, Azores high ext.	2.8%
Regime 7												2	6	4	4	Cyclonic SWly, low WNW of Ireland	2.2%
Regime 8										2	4	6	4	2	2	Cyclonic W-NWly, low near Shetland	3.1%
Regime 9										2	4	4		2	2	Anticyclonic N-NEly, high near Iceland	2.6%
Regime 10													2		2	Anticyclonic W-SWly, slight Azores ridge	3.4%
Regime 11													4	2		Cyclonic, low centred over southern UK	2.4%
Regime 12								2	4		2	2		2	2	Anticyclonic Sly, high over Poland	4.2%
Regime 13							2		6	16	10	6	8	2	2	Anticyclonic NWly, high SW of Ireland	4.4%
Regime 14											10	12	12	8	6	Cyclonic N-NWly, low near S Sweden	4.0%
Regime 15	100	51	84		2	18		6	12	4	6	6	8	4	8	Unbiased SWly, very windy NW Britain	4.6%
Regime 16												2	2	2	2	Anticyclonic S-SEly, high E of Denmark	2.7%
Regime 17								4	6	2	4		2			Anticyclonic E-SEly high over Denmark	4.3%
Regime 18						6	18	55	39	25	12	10		6	4	Anticyclonic SWly, high over N France	4.7%
Regime 19														4	4	Cyclonic Nly, low E of Denmark	4.0%
Regime 20			10	100	76	31			2	2		6	8	8	4	Cyclonic Wly, intense low near Iceland	4.1%
Regime 21										2	4	2	6	14	12	Cyclonic SWly, deep low S of Iceland	3.8%
Regime 22												2			2	Cyclonic Sly, low W of Ireland	3.2%
Regime 23		49	6		18	41	80	25	27	31	20	12	6	2	4	Unbiased Wly, windy in N	4.1%
Regime 24			1. A									2	12	14	14	Cyclonic Nly, low in N Sea	3.2%
Regime 25								6		6	6	6	2		4	Anticyclonic Nly, high centre Irish Sea	3.6%
Regime 26					2	4				6	8	8	2	6	14	Cyclonic NWly, low near Norway, windy	3.4%
Regime 27																Anticyclonic Ely, high in Norwegian Sea	3.7%
Regime 28													2			Cyclonic SEly, low SW of UK	2.8%
Regime 29												2	2	4	2	Cyclonic S-SWly, deep low W of Ireland	2.9%
Regime 30					2						2	2	8	12	4	Cyclonic W-SWly, deep low SE of Iceland	3.0%
Total Members	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51		

Met Office Ensemble forecasts of extreme hazard probabilities ...

^{∞ Met Office} Global Hazard Map

Ensemble hazard probabilities overlaid against global scale vulnerability datasets - population density

Global Hazard Map

Met Office

Ensemble hazard probabilities overlaid against global scale vulnerability datasets - fragile states

Ensemble comparison with other centres

Data source: Japan Meteorological Agency – JMA – website http://epsv.kishou.go.jp/EPSv

Scorecards vs individual centres

CRPS scorecard MOGREPS-G vs JMA Oct 2018. Up-green (downpurple) triangles show better (worse) performance in MOGREPS-G.

• Weaker tropical 250hPa winds improved in PS41, but 850hPa temperature bias degraded

Index time-series vs all centres

High-res deterministic RMSE Index (left) and ensemble CRPS Index (right) time-series with Met Office as zero (blue) line.

• Ensemble performance close to deterministic, but also highlights specific features linked to the ensemble

Tropical Cyclone 7-day strike probability forecasts 88 named storms in Jul 2017 – Jun 2018

- No single ensemble system is best in all areas for strike probability
- MOGREPS-G in 2nd place overall
- Multi-model system always best for this metric

- 4DEnVar does not need a linear PF model (simplifies code maintenance) because it uses ensemble information throughout assimilation window
- Still uses climatological background error covariances (hybrid scheme)
- The 4DEnVar executable can also do an ensemble of analyses: En-4DEnVar:
 - (For each member, create increments relative to its own background trajectory)
- Routines available to deal with inflation, perturbed observations, etc.

Stochastic Physics and Model Error schemes

Scheme	Complexity/Cost	Maintenance	Effectiveness
SKEB (Stochastic Kinetic Energy Backscatter)	Theory not fully robustWidely used, but in declineModerate cost	Well established in UM, no significant cost	++
SPT (or SPPT) (Stochastic Perturbation of Tendencies) (Impl. PS41 in 2018)	Widely usedSimple and flexibleModerate cost	Part of GA7 (as with SKEB), stable performance	++
Additive Inflation (using DA Incr archive) (Impl. PS43 in 2019)	 New idea, less tested Code lacks documentation Large offline IO & storage 	Needs regular updating of operational Analysis Increment archive	+++
Perturbed parameters (Retired in PS41 2018)	Very simpleMinimal costCan be expanded to 2D	Needs to keep track with physics developments. Magnitude and correlation of perturbations complex.	+

Additive inflation

6 hours

Create a year-long archive of data assimilation increments, then at each time-step during the model forecast add:

- 1. a randomly selected historical analysis increment (with 50% scaling) per six-hour period, retaining the selection for the same validity time in subsequent forecast cycles
- 2. a three-month mean increment, as a bias correction (with no scaling)

Note: the random selection and mean are both from the same three-month period, corresponding to the day/month of the forecast to account for seasonal dependencies

En-4dEnVar (early low-resolution results) Improves spread, bias and error Period: 1 Sep – 15 Oct 2018; Truth = ECMWF Analyses

RMSE, spread, bias - T850 (tropics)

• Al improves bias and RMSE

Rank histogram (T+48h) - T500 (NH)

• En-4DEnVar improves under-dispersion and AI improves bias

Brief description MOGREPS-UK

- 18-member time-lagged UK ensemble with UM at ~2.2km grid resolution
 - 3 members run every hour with last 6 cycles combined to provide 18 member forecasts
- Forecasts to 5 days
- Downscaled global perturbations from corresponding MOGREPS-G members added to latest hourly 4D-Var UK analysis
- Stochastic physics by SKEB and SPPT

MOGREPS-UK Hourly Demo Probability of 6 Hour Mean Thickness of Rainfall Amount > 10 Mm Cycle Time: 01 UTC on Fri 16/08/2019 Validity Time: 12 UTC on Fri 16/08/2019 (T+5 - T+11)

MOGREPS-UK snowfall postage stamps animation

lwe thickness of snowfall amount 6hr sum (mm)

n Copyright 2018, Met Office

Met Office T+29 to 35, Valid 1400 UTC on Tue 27th Feb

T+81 to 87 Valid Thu 1st March

Large spread in frontal snowfall positioning in the south and south west.

Lots of snow shower activity in the NE.

The Big Data Challenge: huge volumes and rapid updates

Forecast systems throwing out vast quantities of data for forecasters and users to assimilate:

- Global models: 690 Gbytes per day
- UK models: 3200 Gbytes per day
- TOTAL: 3.9 Tbytes per day

Forecasts updated every hour or more – Drinking from a Firehose of data!

Blended Probabilistic Post-Processing

- Multiple forecasts from different models
 - Difficult for a user or operational meteorologist to keep track
- Single automated best-estimate forecast, blending the most appropriate model forecasts for any place and forecast time

℅ Met Office IMI

IMPROVER chains

Physical / statistical Spot New Time-lag Calibration Blending extraction variables adjustment neighbourhood 00 temperature, rain, 0 00 snow, cloud, visibility, 0 wind ... Ο 00 0 Level 1 Level 2 Level 2 Level 2 Level 2 Level 3 Level 3 ensemble ensemble ensemble probabilities probabilities probabilities probabilities Other model (\mathbf{V}) $\left(\mathbf{V} \right)$ ้งไ V (\mathbf{V}) V probabilities Threshold 60 80 90 1 10 20 40 99 probability (%)

www.metoffice.gov.uk

© Crown Copyright 2019, Met Office

- Blended probability of rainfall
 - Showing prob (rain rate) > 0.03mm/hr
- Similar processing chains for snow, cloud, visibility, winds, temperatures, etc
- Combine to determine appropriate weather symbol...

Met Office Example of verification at each step: Temperature: CRPS

Surface (1.5m) Temperature, Reduced MOGREPS-UK Model area, Equalized and Meaned between 20171101 00:00 and 20171130 00:00, Surface Obs

- CRPS (•) measures quality of full PDF. Lower is better
- Nbhood reduces reliability penalty (x) at the expense of 'potential' (+)
- Nbhood more net benefit to UKV (no prior spread)

Met Office The challenge to exploit ensemble prediction

ECMWF and NCEP ensembles introduced in 1992; MOGREPS in 2005

Scientific case for ensembles overwhelming, but exploitation in services challenging:

- ...the public don't understand probabilities...
- ...uncertainty is too difficult to communicate...
- ...just tell me what will happen...I just need to make a decision...

Risk Management Tool Risk = Probability X Impact

Unknown Model probability of rainfall rate > 0.03 mm/hr

Cycle Time: 11 UTC on Thu 06/12/2018 Validity Time: 11 UTC on Thu 06/12/2018 (T+0)

Example: Probability of Precipitation from new IMPROVER blend of models (UKV and MOGREPS-UK) – see Roberts, MOSAC 2019.

probability (%)

Exploiting ensembles is a common challenge

My old friend and fellow ensemble campaigner Steve Tracton said to me about this workshop:

"Can you believe after all these years the w/shop announcement starts with The workshop's central theme is to support NWS in its transition from single-value deterministic to ensemble-based probabilistic forecasting and to convey uncertainty to users..."? I'd like to say we had made more progress, but here is a quote from the Met Office's emerging Science Strategy:

Theme: Producing and Exploiting Ensembles

Goal 1: Transform operational prediction to be based on ensembles...

We have made progress – on both sides of the Atlantic – but we can do much better

Questions?

Examples of ensemble-based tools in support of risk-based decision-making

Risk Management Tool Risk = Probability X Impact

