IMPACT BASED FORECAST FOR THE CANADIAN ARMED FORCES

From a deterministic to a probabilistic approach

David Dégardin Marie-France Turcotte Joint Meteorological Center Aviation and Defence Services, Environment & Climate Change Canada

8th NCEP Ensemble User Workshop August 27-29, 2019 College Park, MD

THE SITUATIONAL AWARENESS PROJECT

- 1. Project's framework
- 2. Rationale
- 3. Consolidated Weather Impact Chart (CWIC)
 - Objectives
 - Principles
- 4. Current state (deterministic modeling)
 - In house web-site
 - WMS/WCS/WFS capability
- 5. Looking ahead (probabilistic modeling)

Environnement et

Changement climatique Canada

CAF Matrix

Environment and

Climate Change Canada

Vigilance-in-Context Matrix

"Holly cow ... There's a lot of cows ... !!!..."

Project's framework

THE SITUATIONAL AWARENESS PROJECT

• Data centric approach

The « *Modernization of MetOc data Services* » Document (SOCD, sept 2015) suggests a significant update of CFWOS website to incorporate OGC-compliant web services to allow for interoperability with other applications and services, and to provide timely and cost efficient transmission of data to deployed assets.

MSC Vision

"Prediction system will evolve towards a greater automation of forecast production while allowing the expertise of the operational meteorologist to be focused where the risk of hydrometeorological impacts is highest". The evolution will take into account where meteorologist value is added to validate automation of data streams

Rational

- Currently, these types of products do not benefit from NWP's capabilities:
 - \circ data set on grid,
 - ensemble forecasts,
 - o **automation**
- Data centric approach / MSC Vision:
 - Going away from manual production of weather impact matrix (time consuming),
 - Allowing flexibility in delivery information (data, product, GIS, Web Service etc)
 - Focusing « met » expertise where impacts are highest

Consolidated Weather Impact Chart (CWIC)

Environnement et Climate Change Canada Changement climatique Canada

Consolidated Weather Impact Chart (CWIC)

Current state (deterministic modeling)

Current state (deterministic modeling)

Environnement et Changement climatique Canada

Looking ahead (probabilistic modeling)

Question: How to keep the info consistency while moving from deterministic to probabilistic NWP?

Changement climatique Canada

In a Nutshell

Environment and

- 1. The **British Matrix Table Concept** which combines the level of impacts the weather may cause and the likelihood of those impacts occurring.
- 2. The **European EFI concept**, computed from the GEPS, provides signals of anomalous weather relative to the model climatology.
- 3. **Percentile's computations** which allow the capability to choose any adapted thresholds for specific needs/issues for all sensitivity types.

are pillars upon which a **MetOc impact database**, relying on forecasted weather elements, will be developed in order to :

- Assist with the flexibility of the CAF in their decision making processes and
- Help our forecasters to identify regions where their expertized will be required

Environnement et Climate Change Canada Changement climatique Canada

Questions?

Impact Based Forecast for the Canadian Armed Forces

From a deterministic to a probabilistic approach

Thank you

David.degardin@canada.ca

Joint Meteorological Center

Aviation and Defence Services, Environment Canada

Consolidated Weather Impact Chart (CWIC) – Seamless suite of systems

Consolidated Weather Impact Chart (CWIC) – Seamless suite of products

Consolidated Weather Impact Chart (CWIC) – A relevant database

Main

A relevant database will be constituted by environmental elements (MetOc) with at least one the following features:

- 1. Highest temporal and spatial resolutions available.
- 2. Representativeness of MetOc's impact on considered mission:
 - Highest/lowest intensity,
 - Accumulation over periods
 - Exposition to a potential MetOc's impact,
 - Duration of MetOc's impact.
- 3. MetOc elements relevant for either Aviation, Navy, Land or Intelligence activities,
- 4. Known vulnerabilities,
- 5. .

Big data and bandwidth issues imply compromises and restrictions on the database elaboration

Consolidated Weather Impact Chart (CWIC) – Impacts characterization

The traffic lights code is widely (NATO) used to express the potential risk related to meteorological impacts on troops and materials.

WEATHER IMPACTS ON MARITIME OPERATIONS

2.	METOC	impact	colour	criteria
----	-------	--------	--------	----------

Color	METOC impact color criteria		
GREEN	Favourable	Little or no impact, no restrictions based on METOC conditions.	
YELLOW	Marginal	METOC conditions degrade or limit OPS	
RED	Unfavourable	Severe impact with significant degradation to OPS; METOC conditions restrict OPS	

METOC_IMPACT_NATO_AMC 13_5b_SHAPE

SMALL BOAT OPS	Sea State < 3	Sea State 3-4	Sea State > 4
SINALE BOAT OF S	Surface wind < 10 kts	Surface wind 10-20 kts	Surface wind > 20 kts
EMBARGO OPS	Sea State < 4	Sea State = 4-5	Sea State > 5
AMPHIBIOUS OPS	Sea State < 4	Sea State = 4-5	Sea State > 5
MCM	Sea State < 4	Sea State 4	Sea State > 4
	Sea State < 5	Sea State = 5	Sea State > 5
FLT OPS CARRIER	Wind < 25 kts	Wind 25-35 kts	Wind > 35 kts
	Visibility > 3.5 km	1 < Visibility < 3.5 km	Visibility < 1 km
	Ceiling > 1500 ft	200 ft < Ceiling < 1500ft	Ceiling < 200 ft
CVS STOVOL	Sea State < 5	Sea State = 5-6	Sea State > 6
	Wind < 25 kts	Wind 25-35 kts	Wind > 35 kts
	Visibility > 5 km	1 km < Visibility < 5 km	Visibility < 1 km
	Temp< 30 ° C	Temp 30°- 35° C	Temp>35 ° C
	Ceiling > 1500 ft	300 ft < Ceiling <1500 ft	Ceiling < 300 ft
MPA/ASW (SONOBUOYS)	Wind < 25 kts	Wind 25-35 kts	Wind > 35 kts

For each operation type, operational limits have been defined for every weather element which can interfere with the considered operation.

Due to a wide range of assets, missions or operations, preset formats production is not an efficient solution when only some of them are considered and when further adjustment to impacts are needed.

Consolidated Weather Impact Chart (CWIC) – Adjustable thresholds

One tool to support the decision process

Maritime Operations - Embargo

Consolidated Weather Impact Chart (CWIC) – Consolidation rule

The worst index make the index (worst case scenario)

Maritime Operations - Personnel/Upper Deck м и и м Instructions: Map Navigation **f** Waves Precipitation Temperature nding: 2019-08-18 002 Ending: 2019-08-19 002 Ending: 2019-08-20 002 Ending: 2019-08-21 002 Ending: Maritime Operations - Personnel/Upper Deck-The Global Deterministic Wave Prediction System (GDWPS) coverage ranges from latitude 80 south to 86 north and from 000 to 360 degrees in longitude. It also doesn't cover inland water bodies such as: the Great Lakes, the Black sea and the Caspian Sea Temperature (C) Positive values: Marginal >= 30 Unfavourable >= 35 Negative values: Marginal <= -6 Unfavourable <= -26</p> Wave Heights (m): Marginal >= 2.00 Unfavourable >= 4.00 Maximum 3HR Precipitation Amount (mm): Marginal >= 7.5 Unfavourable >= 22.5 Refresh $CWIC = Max (Max_{(WxEl1)}, Max_{(WxEl2)}, \dots, Max_{(WxEln)})$ Environment and Environnement et

Changement climatique Canada

Climate Change Canada

Main

Current state (deterministic modeling) – Configuration page

- NATO's missions Catalog
- Capability of deselection of environmental elements
- Adjustable thresholds
- Temporal windows (12/24hr)
- Area-of-interest's definition capability

Product Types	Land Operations - Personnel	Reset
Personnel 🗸	Temperature (C):	
Land Operations	Positive values: Marginal >= 30 Unfavourable >= 35	
Personnel		
Air Operations	✓ Negative values: Marginal <= -6 Unfavourable <= -26	
HIGH RECCE OPS		
Maritime Operations	3HR Precipitation Amounts (mm):	
Small Boats	Rain (mm): Marginal >= 7.5 Unfavourable >= 22.5	
Embargo		
Amphibious	Snow (cm): Marginal >= 6.0 Unfavourable >= 12.0	
MCM		
MPA/ASW (SONOBUOYS)	Ice Pellets (cm): Marginal >= 6.0 Unfavourable >= 12.0	
MIW/HUNT		
MIW/SWEEP	Freezing Rain (mm): Marginal >= 0.6 Unfavourable >= 6.0	
Personnel/Upper Deck		
Naval Refuel (RAS)		
ASuW		
ASW		
AAW		
FPB		
MIO/Boarding		

Environnement et Changement climatique Canada

Current state (deterministic modeling) – Impacts products page

- Update "on-the-fly",
- Animation from D3 to D7,
- Capability of deselection of environmental elements,
- Adjustable thresholds,
- Area-of-interests refinement capability,
- Product dissemination: numerical and graphical formats depending on client's bandwidth capabilities.
- Temporal series for 5 locations: impactgrams

Current state (deterministic modeling) Impact-grams National Défense Defence nationale

- Up-to 5 locations
- Adustable "on-the-fly"
- Light and full versions

CBRN

Login

Main

Current state (deterministic modeling) – GIS on operational visualisation tool

• NinJo WMS layer

Current state (deterministic modeling) – GIS – external WMS client interface

• Partner WFS client interface

Environnement et Changement climatique Canada

Current state (deterministic modeling) – GIS – ESRI application

Main

Looking ahead (probabilistic modeling) – Impacts on Operations

Looking ahead (probabilistic modeling) - Percentiles

How do we use the Ensemble?

- 90th Perc represents 10%,

Values of

- 75th Perc represents 25%,
 50th Perc represents 50%,
 25th Perc represents 75%,
- 10th Perc represents 90%

Usage of percentiles gives more flexibility than the existing calculations on probability of occurrence to be above given thresholds.

More percentiles ranks available would:

- 1. add more flexibility when dealing with the client's sensitivity;
- 2. allow to skim the output files since probabilities of being greater than thresholds would become redundant.

Looking ahead (probabilistic modeling) – CAF Proof of concept

What does the proof of concept look like?

- For a prototype CAF operation purpose.
- Thresholds based on the CAF mission type « Personnel »
- 10%, 25% and 75% probability of occurrence characterize the « sensitivity » of the client.

Looking ahead (probabilistic modeling) – Impacts on population/environment

Looking ahead (probabilistic modeling) – "Vigilance-in-context" matrix

Vigilance inspired by the UK warning impact matrix

Looking ahead (probabilistic modeling) – "Vigilance-in-context" matrix

Contextualization w.r.t. M-Climate

Looking ahead (probabilistic modeling) – "Vigilance-in-context" matrix

"Vigilance-in-context" matrix for the Canadian Joint operations Command (CJOC)

Looking ahead (probabilistic modeling) – Example: Rainfall Dec 15th, 2018

 Casualties and significant damages in several regions of Albania

Environment and

Environnement et Climate Change Canada Changement climatique Canada

Looking ahead (probabilistic modeling) – Ways of improvements

Additional layer to take into account "vulnerabilities" to METOC hazards:

- Population density
- Urbanization rate
- Land use cover (soil type)
- Climatology
- Latest hazard assessment

