Enabling Better Decisions via The Weather Company's Probability Forecast Platform

The Weather Company, an IBM Business James Belanger, Ph.D. *Senior Meteorological Scientist*

Today's Talk

- How can probability forecasts be used in decision-making?
- What capabilities do we offer now?
- Lessons learned

Key Points

- Probability forecasts can be used to optimize decisions
- Quantifying uncertainty increases user's confidence
- Statistical calibration is necessary to ensure forecasts are reliable and sharp

Contributors to Probabilistic Offerings

Global Forecasting Sciences Peter Neilley		Global Weather Solutions	Consumer Products	Data Science Harini Srinivasan
<u>Forecasting Sciences</u> John Williams James Belanger Todd Crawford	Ing Sciences Forecasting Ims Technologies anger Steve Marshall ford Jeff McDonald enzahl Chona Guiang ntrice Meather System	lan Miller <u>Weather Systems</u> <u>Operations</u> Neil McGillis	Robyn Weeks Lindsay Howard Carol Bales Tim Bernas Jessica Gerson	Alex Huang Jeremie Juban Rosha Pokharel
Holly Hassenzahl Joe Koval Michael Ventrice Dana Winn				Energy Rob Boucher
		SUN	Design	Eric Mikula
		Amanda Taylor Mike Stern	Bob Gauvin	

Why Probabilistic?

The atmosphere is a nonlinear chaotic fluid (bifurcations, attractors, etc.)

Chaos \rightarrow The present determines the future ... but the approximate present does not approximately determine the future

Deterministic forecasts represent one potential weather realization

Probabilistic forecasts represent a range of possible realizations (uncertainty)

Probabilistic forecasts can be used to optimize decisions

Example: Crop Frost Loss Mitigation

Consider a farmer making a decision to protect crops in the face of a (near-)freezing forecast.

- Protection is expensive
- But not protecting could lead to significant loss.

Using deterministic forecast of freezing conditions helps....

Normalized Aggregate Frost Losses

Using deterministic weather forecast to make frost protection decision mitigates losses by 30%.

6

Example: Crop Frost Loss Mitigation (2)

... but using probabilistic forecasts in conjunction with cost-loss optimization further improves the net economic outcome.

Normalized Aggregate Frost Losses

Probabilistic-based protection decisions mitigate frost losses by 50%..

The Weather Company, an IBM Business / 🖸 2019 IBM Corporation

IBM.

Quantifying uncertainty increases user's confidence

Consumer Product User Survey, January 2017

Would you find it useful to view information describing how confident or certain we are in a forecast?

Consumer Snowfall - Vison Framing

Problem Statement

Global users with snow perceive a mismatch of forecast and observed snowfall, eroding trust & relevance for the brand. Opportunity

Knowing there's a high likelihood the forecast may change is almost as important as knowing the forecast itself.

Communicate certainty & uncertainty of snowfall forecasts

to increase understanding and confident decision making during winter weather events.

Consumer Snowfall

- Snowfall forecasts derived from 154 models (EC ENS, GEFS. etc.)
- Snowfall forecasts calibrated via Logistic Regression + Bayesian Model Averaging using NOHRSC analyses
- Arbitrates machine-generated forecasts with human • influenced forecast to impart some consistency
- Calculate snowfall exceedance probabilities, boom \bullet and bust amounts, confidence metric

Live in Weather Channel iOS mobile application as of February 2019

TWC's Probability Forecast Products

15-day Probabilistic (PFP) SUN API available in PA

Time resolution Hourly or interval max, min, or sum

<u>Variables</u> Temperature

Snowfall Wind Direction Ceiling Precipitation Dewpoint Relative Humidity Wind Speed Wind Gust Visibility

<u>Products (user specified)</u> Range probabilities Probability distributions Percentiles Forecast prototypes

FOD 7-day Snowfall SUN API for Consumer Product

<u>Time resolution</u> Morning and overnight dayparts Timespans: 12, 24, 36, 48, 72 h

<u>Variables</u>

Snowfall accumulation Incorporates forecaster input

<u>Products</u> Probability of accumulation Interval probabilities Percentiles (10th and 90th) Confidence (of FOD interval)

Tropical Cyclone 15-day intensity strike probabilities SUN API available in Passport Advantage Point publishing via email, SOW Created on the 5th of each month <u>Time resolution</u> Daily 0 – 6 months <u>Variables</u>

Seasonal Probabilistic

Daily min, mean, max temperature Daily precipitation Temperature and precip anomalies

<u>Products</u> Percentiles Forecast prototypes

Statistical calibration is necessary to ensure forecasts are reliable and sharp

Impact of Calibration on 2m Temperature

PIT = Probability Integral Transform, a histogram of observation percentiles

Raw 2m Temperature 0.3 0.25 Relative Frequency 0.1 0.1 0.05 Randomized: 01% 0 0.2 0.6 0.8 0 0.4 **PIT Values**

Cross-validation study 1 April 2017 – 15 September 2017 2300 CONUS METAR locations, 48 hour forecast

The Weather Company, an IBM Business / 🗉 2019 IBM Corporation

Calibrated 2m Temperature

Impact of Calibration on Discrete PDF

Uncalibrated Percentiles

"noisy" and difficult to interpret the raw multi-model ensemble distribution

The Weather Company, an IBM Business / 🗉 2019 IBM Corporation

bi-modal with higher probability for warmer temperatures

Calibrated Percentiles

Probabilistic Snowfall

Reliability

Total Events 17391

Total Fcsts 312112

20 40 60 80 100

Forecast Probability (%)

Forecast Probability (%)

20 30 40 50 60 70 80 90 100

20

Total Events 15401

Total Fcsts 414364

20 40 60 80 100

40 50 60

Forecast Probability (%)

Forecast Probability (%)

Day 3

Perfect Reliability

Calibrated Forecasts

No Resolution

Raw Forecasts

Day 7

Perfect Reliability

Calibrated Forecast

No Resolution

Raw Forecasts

No Skill

No Skill

The Weather Company, an IBM Business / 🖸 2019 IBM Corporation

Skill

Key Points

- Probability forecasts can be used to optimize decisions
- Quantifying uncertainty increases user's confidence
- Statistical calibration is necessary to ensure forecasts are reliable and sharp

Thank You ! james.belanger@ibm.com

