Enabling Better Decisions via The Weather Company's Probability Foreceast Platform
 The Weather Rompany, an IBM Business
 James Belanger, Ph.D.
 Senior Metearologice/Scientist

Today's Talk

- How can probability forecasts be used in decision-making?
- What capabilities do we offer now?
- Lessons learned

Key Points

- Probability forecasts can be used to optimize decisions
- Quantifying uncertainty increases user's canfidence
- Statistical calibration is necessary to ensure forecasts are reliable and sharp

Eantributors to Probabilistic Cfferings

The Weather Company, an IBM Business / © 20II IBM Carporation

Why Probabilistic?

The atmosphere is a nonlinear chautic fluid (bifurcations, attractors, etc.)

Chaus \rightarrow The present determines the futures... but the approximate present does not approximately deternine the future

Deterministic forecasts represent one potential weather realization

Probabilistic forecasts represent a range of possible realizations (uncertainty)

Probabilistic foreeasts can be used to aptimize

 derisions
Example: Erop Frost Loss Mitigation

Consider a farmer making a decision to protect crops in the face of a (near-)freezing forecast.

- Protection is expensive
- But not protecting could lead ta significant lass. Using deterministic forecast of freezing conditions helps....

Normalized Aggregate Frost Lasses

Using deterministic weather forecast to make frost protection decision mitigates losses by 30\%.

Example: Grop Frost Lass Mitigation (2)

Normalized Aggregate Frost Losses
... but using probabilistic forecests in conjunction with cost-loss optimization further improves the net economic outcome.

Probabilistic-based protection decisions mitigate frost losses by 50\%..

Cost Breakdown

Available Actions

Ruantifying uncertainty increases user's confidence

Ponsumer Product User Survey, Januery 2017

Would you find it useful to view information describing how confident or certain we are in a forecast?

Which format would be most useful for conveying level of forecast certainty / confidence?

Not sure

Consumer Snowfall - Vison Framing

Problem Statement
Global users with snow perceive a
mismatch of farecast and observed snowfall, eroding trust \AA relevance for the brand.

Dpportunity
Knowing there's a high likelihood the forecast may change
is almost as important
as knowing the forecast itself.

Communicate erertiinty 8 uncertainty of snowfill foreecests

to increase understanding and confident decision making during winter weather events.

Consumer Snowfall

- Snowfall forecasts derived from 154 models (EC ENS, EEFS. etc.)
- Snowfill foreeasts salibrated via Logistic Regression + Bayessian Madel Averaging using NDHPSC analyses
- Arbitrates machine-generated foreceasts with human influenced forecast to impart some consistency
- Calculate snowfall exceedance probabilities, boom and bust amounts, confidence metric

Live in Weather Channel iUS mobile applicetion as of Februery 2019

TWL's Probability Farecast Produrts

F5-day Probatilistir (PFP) SUN AP available in PA	
Time resolution	
Hourly or interval max, min, or sum	
Variables	
Temperature	Precipitation Dewpoint Relative Humidity
Snowfall	Wind Speed
Wind Direction	Wind Gust
Ceiling	Visibility
Products (user specified)	
Range probabilities	
Probability distributions	
Percentiles	
Forecast protatypes	

FID 7-day Snawfall

SUN API for Consumer Product
Time resolution
Morning and overnight dayparts
Timespans: IZ, 24, 36, 48, 72 h
Variables
Snowfall accumulation
Incorporates forecaster input
Products
Probability of accumulation
Interval probabilities
Percentiles (I $0^{\text {th }}$ and $90^{\text {th }}$)
Canfidence (of FID interval)

Seasonal Probabilistic

Point publishing via email, SUW
Created on the 5th of each month
Time resolution
Daily D-B months
Variables
Daily min, mean, max temperature Daily
precipitation
Temperature and precip anomalies
Products
Percentiles
Forecast prototypes

Trapical Cyclane
I5-day intensity strike probabilities
SUN APl available in Passport Advantage

Statistical calibration is necessary to ensure foremests are reliable and sharp

Impact of Calibration on 2m Temperature

PIT = Probability Integral Transform, a histagram of abservation percentiles

Raw 2m Temperature

Calibrated 2m Temperature

Cross-validation study I April 2017 - 15 September 2017 23010 CONUS METAR locations, 48 hour foreeast

The Weather Company, an IBM Business / © 20II IBM Carparation

Impact of Calibration on Discrete PDF

Uncalibrated Percentiles

"noisy" and difficult to interpret the raw multi-model ensemble distribution

The Weather Company, an IBM Business / © 2019 IBM Corporation

Calibrated Percentiles

bi-modal with higher probability for warmer temperatures

Probabilistic Snowfall

Reliability
Skill

Cross-validation study I January - 3 April 2018 230 CONUS METAR locations

The Weather Company, an IBM Business / © 20II IBM Carporation

Key Points

- Probability forecasts can be used to optimize decisions
- Quantifying uncertainty increases user's confidence
- Statistical calibration is necessary to ensure forecasts are reliable and sharp

The Weather Company, an IBM Business / © 2019 IBM Corporation

Thank You!

james.belanger@ibm.com

