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Background
 Reliable probabilistic quantitative precipitation forecast (PQPF) is 

essential for weather forecast centers and hydro-meteorological 
applications

 Due to imperfect initial condition and model configuration, ensemble 
forecast systems are usually subject to biases and dispersion errors

 Statistical post-processing methods are often used to calibrated the 
raw ensemble forecasts to generate more reliable and accurate
probabilistic forecasts

 EMOS is one of the state of art ensemble post-processing techniques 
(firstly proposed by Gneiting et al. 2005 for Gaussian variables)

Ensemble Model 
Output Statistics

(Nonhomogeneous 
Regression)

Method

Use
 Scheuerer (2014) used EMOS for PQPF based on 

left-censored GEV distribution

 Scheuerer and Hamill (2015) used EMOS for PQPF based on 

censored shifted gamma (CSG) distribution



Aim: Post-process PQPFs of 70 stations 
in Jiangsu Province, China

Plain topography Assume consistent error



Data

 Observation data: 00-00 (UTC) daily precipitation from 70 
rain gauge stations in Jiangsu Province, China.

 Forecast data: ECMWF 24-h ensemble precipitation forecast 
initialized on 12UTC  with 50 perturbed members on 0.5*0.5 
degree grid.

 Forecast data is interpolated onto the 70 rain gauge stations.

 Forecast lead time: 012-036h and 036-060h.

 Validation period: June to August, 2017.

 Training method: Train each day individually using 40-day 
combined symmetric sliding window (20 latest days with 
observation and 20 days after the forecast day of previous 
year)

 Continuous Ranked Probability Score (CRPS)

 Brier Skill Score (BSS)

 Reliability Diagram
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Steps of EMOS
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First we calculate forecast and observation quantiles

where k=1,2,…,99. Values between the fixed quantiles 

are linearly interpolated.

For forecast lower than                      ,  where        

the QM corrected forecast is 

As for forecast larger than                     , the QM 

corrected forecast is
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Scheuerer and Hamill (2015)
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Where                are  

location parameter, 

scale parameter, 

and shape parameter, 

respectively.

The cumulative distribution function (CDF) of GEV 

distribution:
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Left-censored Generalized Extreme Value Distribution (GEV) distribution

Precipitation is a skewed non-negative variable.

The left-censored GEV distribution

is non-negative, flexible enough and able to 

extrapolate precipitation extremes with a long tail

Predictive distribution of daily precipitation (00-00 UTC) on 31 July 2016 fitted by left-censored GEV distribution



Sensitivity of GEV distribution to location, scale and shape parameters by increasing and 
decreasing a certain parameter value while remain other parameters unchanged.

The location parameter mainly adjusts the predictive mean and the scale parameter mainly 
adjusts the predictive variance, while the distribution is not very sensitive to the shape parameter.
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Left-censored Generalized Extreme Value Distribution (GEV) distribution

Take a linear relationship between the 

location parameter and ensemble mean, 

and between the scale parameter and 

ensemble variance

The shape parameter is set to constant.

(Lerch and Thorarinsdottir, 2013)

In Scheuerer (2014), the shape parameter is always 

assumed to be between -0.278 and 1.  

We tested the different values of shape parameter.
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Problem No. 1

Problem No. 2

Problem No. 3

 The solution could be sensitive to multi-parameter initial values, which are 

required to start these algorithms.

 Too many parameters often result in overfitting.

 The quasi-newton method, for example, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, 

is usually used to obtain the approximate solution.

Multi-parameter optimization problem (minimize CRPS)

 These algorithms cannot guarantee convergence to a global optimal solution, 

i.e., they can only get locally optimal solution and better solution could exist 

somewhere. Obtain a global optimal estimation of the parameters with brute-force method

No initial values are required any more

Reduce parameters to two



Brute-force method to minimize CRPS Given the predictive GEV distribution, 

how CRPS changes with 

different values of observation.
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Reduce the overall 
PQPF error

Skillful especially for 
large precipitation events



The conditional biases are well calibrated
The better BS of EMOS is mainly due to the well calibrated reliability



Conclusion
 A two-parameter EMOS post-processing model based on the left-censored GEV distribution 

for the short-term ECMWF ensemble precipitation forecast is proposed.

 The purpose is to avoid overfitting and obtain global optimal solution of model parameters.

 The predictive mean and variance of ensemble precipitation forecast are mainly adjusted by 

the location and scale parameters respectively, while the predictive distribution is not sensitive 

to the shape parameter.

 The two-parameter EMOS can reduce overall probabilistic forecast error and improve the 

probabilistic precipitation forecast skill of different precipitation thresholds during summer 

time, especially for large precipitation events.

 The good forecast skill of the two-parameter EMOS post-processing model is mainly due to 

the better calibrated reliability.



Thank you!
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