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• Disclaimer: This talk is about

statistical methods and analysis.

• Motivation: Vulnerability – ex-

posure, sensitivity, and adaptive

capacity.

• Challenge: Health impacts are

distributed unevenly.

F Differentiated vulnerability.
– ephtracking.cdc.gov

• Goal: Incorporate high-resolution numerical model output, satellite

data, parcel data, census data, survey data into a statistical model

for public-health endpoints (heat-related mortality, hospitalizations,

911 calls, and heat-related attitudes).

• Postscript: Dealing with uncertainty...
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The foundation of the statistical approach comes from two ideas:

Each block group has its own heat-

related risk curve (differentiated

vulnerability).
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The spatial variation in these

curves can be explained via

covariates (e.g., census, par-

cel, etc.) and spatial random

effects.
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A hierarchical model
for connecting mortality to heat/demographics/etc.

Stage 1: Ytb ∼ P (Eb exp{µtb})

Links mortality to risk

Stage 2: µtb = β0 + (demob)
′β + (heattb)ηb + φb + δt

Links risk to demographics & heat stress

Stage 3: ηb = γ0 + (demo?b)
′γ + νb + ζb

Links heat response to demographics

• Breaks a complicated problem into smaller, more manageable pieces

– Buy a house with a paperclip? (oneredpaperclip.blogspot.com)



A hierarchical model
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After some careful consideration (and some math), the hierarchical

model boils down to a Bayesian Poisson GLM.

• Covariates enter the model in a way to

minimize collinearity.

• Spatial random effects enter through a

collection of basis functions that de-

pend on the spatial structure but mini-

mize collinearity with covariates.

• Model includes main effects (demo-

graphics, heat, space) and interactions.
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With this in mind, we are moving forward to generalize this statistical

approach for data exploration, different spatial lattices, and additional

locations.
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Stage 1: Ytb ∼ P (Eb exp{µtb})
Daily Mortality Counts (‘99-’06) 
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Daily mortality counts, 1999-2006.

• Mortality data from the Texas De-
partment of State Health Services
and listing ICD9 codes for car-
diovascular, genitourinary, respira-
tory, nervous system, or hyper-
thermia as a contributing cause of
death.

• Aggregate counts {Ytb} to cen-
sus block groups; focus only on
(M)JJA(S).

• Expected counts {Eb} computed
assuming constant mortality rate.

• {exp{µtb}} are relative risk of heat-
related mortality over space and
time.



A hierarchical model

7

Stage 2: µtb = β0 + (demob)
′β + (heattb)ηb + φb + δt

Daily Mortality Counts (‘99-’06) 
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% in Poverty, 2000 Census.

Demographic variables:

• Census: race, age, living alone,
public transportation, poverty, ed-
ucation, etc.

• Parcel: air conditioning, age of
residential buildings, pools, build-
ing quality, etc.
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Stage 2: µtb = β0 + (demob)
′β + (heattb)ηb + φb + δt

HRLDAS, 1999-2006.

• High Resolution Land Data As-
similation System (HRLDAS) cou-
pled with an Urban Canopy Model
(UCM) to better represent the
physical processes involved in the
exchange of heat, momentum,
and water vapor in the urban en-
vironment.

• Heat stress measured through var-
ious heat indices: discomfort in-
dex, NWS heat index, humidex,
apparent temperature, wet bulb
globe temperature, daily max/min
temp.
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Variable selection for heat stress:

Rank Likelihood # Positive CIs Total
1 TMP:MIN TMP:MIN TMP:MIN
2 HI:MIN HU:MAX DI:MIN
3 DI:MIN DI:MIN WBGT:MIN
4 WBGT:MIN AT:MAX DI:MAX
... ... ... ...

Variable selection for Stage 2: µtb = β0 + (demob)
′β+ (heattb)ηb+φb+ δt

Variable Post. Mean 95% CI
% older than 65 years 5.66 (5.49, 5.80)
% with no air conditioning 0.48 (0.37, 0.61)
% living alone 0.95 (0.80, 1.21)
% African American 0.55 (0.35, 0.81)
% in poverty 0.49 (0.36, 0.65)
% under 5 years -1.93 (-2.06, -1.76)

Variable selection for Stage 3: ηb = γ0 + (demo?b)
′γ + νb

Variable Post. Mean 95% CI
% older than 65 years 1.80 (1.39, 2.22)
% Caucasian, older than 65, Living Alone 0.60 (0.38, 0.83)
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Figure 1: Posterior mean of cumulative relative risks averaged over time ((8⇥ 92)�1
P

y,t exp{µytb}). Block
groups in white are those where a 95% credible interval contained zero (i.e. no significant increase or decrease
in risk from Eb). Block groups with relative risk greater than zero are at an elevated risk of non-accidental
mortality.

5.2. Heat Exposure Risk Factor Results

Next, consider the portion of the cumulative relative risk that is due to heat exposure;
specifically, consider inference for the term (heat)ytb⌘b in Equation (2). Table 3 displays
the heat exposure variables from Table 1 ranked according to deviance information criterion
(Spiegelhalter et al., 2002), number of 95% credible intervals strictly greater than zero, and
total rank.

Consider, first, ranking the variables based solely on the deviance information criterion
(DIC). The DIC is a measure of model goodness of fit. Models with low DIC are preferred
to models with high DIC. According to Table 3, the heat variable that gives the best model
fit is daily minimum temperature (TMP:MIN). However, the two next best models used
minimum heat index (HI:MIN) and discomfort index (DI:MIN) and had DIC values only
2.74 and 4.23 greater than the model using TMP:MIN suggesting nearly equal fits for these
three variables. Apart from daily minimum temperature, these other heat variables are
composite temperature/humidity indices suggesting that non-accidental mortality may be
explained by a combination of variables related to high heat.

Identifying a heat variable which is positively associated with non-accidental mortality
risk can be beneficial for heat hazard preparedness and response purposes. For example,
the National Weather Service (NWS) issues heat warnings if the heat index exceeds certain
thresholds. This method for issuing heat warnings suggests that by identifying a heat ex-
posure variable that is positively associated with relative risk, public health o�cials will be
able to take appropriate actions should the heat variable reach dangerous levels. Considering
this aspect, the second column of Table 3 ranks the heat exposure variables based on the

11

Posterior mean of (time averaged) mortality risk

(8× 92)−1 ∑
y,t exp{µytb}
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Figure 2: Map of posterior mean of time-averaged heat risk ((8⇥92)�1
P

y,t(heatytb)⌘b) using daily minimum
temperature (TMP:MIN). Block groups shaded white are those where a 95% credible interval contained zero
(i.e. no significant increase or decrease in risk due to heat exposure).

or decrease in non-accidental mortality risk due to heat exposure. While Figure 1 is useful in
identifying areas with high overall relative risk, Figure 2 is perhaps more useful in assessing
public heat vulnerability because it portrays those block groups where relative risk is inflated
due specifically to heat exposure. Figure 2 highlights several inner-city and suburban block
groups with an elevated risk due to heat exposure. For example, the group of census blocks
to the north-east of the city center have elevated relative risk due to heat exposure yet the
overall relative-risk of these same block groups in Figure 1 is less than zero.

5.3. Demographic Risk Factor Results

Using TMP:MIN as the heat exposure variable, Table 4 displays the selected demographic
variables from the forward selection algorithm described in Section 4. The chosen model had
a BIC value of -2219421 compared to a null model BIC value of -2211342 (a di↵erence of
-8079). The next smallest BIC value was -2219446. This small di↵erence in BIC suggests
that several variables may equally explain trends in relative risk but we choose to focus on
the model that achieved the best fit.

Table 4 also displays the posterior mean of the percent change in relative non-accidental
mortality risk given a 1% increase in the demographic variable holding all else constant (the
� coe�cients in Equation (2)). For example, according to Table 4, if the percent of the
population within a block group older than age 65 increased by 1%, the relative risk of non-
accidental mortality for that block group would increase by 5.66% (95% credible interval of
5.49% to 5.80%).

The variables identified in Table 4 are enlightening and highlight important potential
vulnerability factors. The percent of the population 65 years and older and percent of

13

Posterior mean of heat exposure mortality risk

(8× 92)−1 ∑
y,t(heatytb)ηb
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Posterior mean of ηb (sensitivity), given ηb is credibly greater than zero.
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avg min temp = 22 avg min temp = 23.3 avg min temp = 23.8 avg min temp = 24.2 avg min temp = 24.4

avg min temp = 24.7 avg min temp = 24.9 avg min temp = 25.2 avg min temp = 25.6 avg min temp = 26.2

Heat maps (exposure).
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Probability of at least one 911 call from an analysis of n = 2054 heat-

related 911 calls from 2006-2010 via a marked point pattern.



Questions?

17

ssain@ucar.edu

http://www.image.ucar.edu/∼ssain Thank You!
• Heaton et al. (2013), “Characterizing urban vulnerability to heat stress using a

spatially varying coefficient model,” submitted.

• Heaton et al. (2013), “An analysis of an incomplete marked point pattern of
heat-related 911 calls,” submitted.


