

Benefit Analysis of Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration

A. Izadi, J. Seo, N. Hinze, and A. Trani Air Transportation Systems Laboratory

Aviation Weather Industry Technology Meeting May 24, 2022

Outline

- ROMIO Benefit Analysis: a Multi-step Approach
 - 1. Survey Analysis
 - 2. Convective Weather Avoidance Analysis
 - Quantifies the operational benefits of strategic deviation maneuvers
 - Compares the deviation maneuvers to avoid convective weather in the Pre-ROMIO and Post-ROMIO periods

3. Simulation-Based Analysis

- Evaluated potential fuel and travel time savings benefits using the FAA/Virginia Tech Global Oceanic Model
- 4. Potential Injury and Airframe Benefits
 - Evaluated potential passenger injury and airframe cost savings

Acknowledgements

- Thanks to Eldridge Frazier (FAA), Gary Pokodner (FAA), Cathy Kessinger (UCAR), and Matthias Steiner (UCAR) for their technical and financial support of this project
- This project was executed as part of a contract between Virginia Tech and the Federal Aviation Administration Administration Weather Technology in the Cockpit program through NEXTOR 2
- Arman Izadi supported by the Najeeb E. Halaby Graduate Student Fellowship (summer)
- The authors would like to thank the US airline pilots who provided survey feedback in the project
- We also acknowledge the collaboration of US airlines, BCI, Gogo, and Panasonic Avionics
- Any opinions, findings, and conclusions presented herein are those of the authors and do not necessarily reflect the views of the FAA.

ROMIO – An Onboard Weather Situational Display System

- Provides 15-minute convective weather update
- iPad or Surface Tablet hardware/software

Benefit Analysis of Remote Oceanic Meteorology Information Operational Demonstration (ROMIO): Volume 1

Report Deliverables

Benefit Analysis of Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration: Volume 2

Jungmin Seo Armand Izadi Nicolas Hinze Antonio A. Trani

- Review of previous benefit studies
- Pilot, dispatcher and AOC surveys
- Statistical analysis of ROMIO Pilot survey
- August 2019

Arman Izadi, Nicolas Hinze, Howard Swingle, and Antonio A. Trani

Air Transportation Systems Laboratory

Virginia Tech

- Statistical analysis of flights
 Weather deviation
 - analysis
- September 2019

Benefit Analysis of Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration: Volume III

Arman Izadi, Nicolas Hinze, Navid Mirmohammadsadeghi, and Antonio A. Trani

Air Transportation Systems Laboratory

Virginia Tech

- Simulation-based analysis
- Injury analysis
- June 2020

Summary of Findings (I)

Survey

- More than 110 surveys with ROMIO questions answered
- 54% of the flights involved in the survey performed a weather deviation
- Generally, pilots offer positive feedback about ROMIO
- Pilots comment that ROMIO provides 10-minute additional time to plan weather deviations compared to on-board weather radar

Convective Weather Deviation Analysis

- Analysis of 18,326 commercial flights shows that strategic weather deviations using ROMIO could save 1.6 minutes per flight (355 lbs. savings per flight)
- Annual fuel consumption savings of 6.8 million pounds of fuel

Summary of Findings (2)

Simulated-Based Benefits Analysis

- Considered South America and North Atlantic traffic
- 115 kilograms (253 lbs.) saved per flight
- 1.8-minute travel time savings
- Annual fuel savings: \$15.3 million
- Injury and Airframe Mitigation Cost
 - 20% reduction in potential exposure to severe convective weather events
 - Annual savings derived from ROMIO demonstration
 - \$5.54 million in the Atlantic Ocean
 - \$1.35 million in the South Pacific Ocean

Summary of Pilot Surveys

- More than 110 surveys with ROMIO questions answered
- 54% of the flights involved in the survey performed a weather deviation
- Generally, pilots offer positive feedback about ROMIO
- Pilots comment that ROMIO provides 10-minute additional time to plan weather deviations compared to on-board weather radar
- ROMIO provides excellent capability for cabin crew coordination
- Average weather deviation for flights in survey is 29 nautical miles

Convective Weather Deviation Avoidance Analysis using Historical Flight Data

VirginiaTech

Invent the Future

Historical Flight Analysis to Identify Convective Weather Avoidance Rules

18,632 flights among 30 bi-directional origin-destination pairs

*J*irginiaTech

Invent the Future

- Pre-ROMIO Period : March, April, May, June , July– 2018 (5 months)
- Post-ROMIO Period : August 2018 to May 2019 (10 months)

Example of Weather Deviation in the Amazon Region

Aircraft Type: B777-300ER

Air Transportation Systems Laboratory

Quantifying ROMIO-Aided Strategic Weather Deviations

Aircraft Type: B777-300ER Average Aircraft Speed : Mach 0.84 Weight ~ 685,000 lb (319 lb/minute cruise fuel flow)

Deviation Alternatives	Early Strategic Deviation	Travel Distance Savings (nm)	Travel Time Savings (min)	Potential Fuel Saved (lb)	Greenhouse Gas Emissions (lb)
D1	10 min (80 nm)	133	16.1	5,136	16,050
D2	15 min (120 nm)	154	18.6	5,934	18,543
D3	20 min (160 nm)	171	20.6	6,571	20,534

"Worked as advertised. The threat of adverse weather was first identified with ROMIO and then within approximately **10 minutes was validated by on board radar and visual sighting**.

Max Lateral Deviation: 240 nm

Operational Benefits of 10-Minute Earlier Deviation Maneuvers

No	Aircraft Type	Average Travel Distance Savings (nm)	Average Travel Time Savings (min)	Average Fuel Consumption Savings (Ibs)	Average Greenhouse Emissions Savings (Ibs)
1	'A332'	13.2	1.6	320	1001
2	'A333'	12.5	1.6	315	983
3	'B763'	9.4	1.2	211	660
4	'B764'	10.7	1.3	248	774
5	'B772'	12.3	1.5	355	1111
6	'B77L'	13.0	1.8	525	1640
7	'B77W'	14.6	1.8	543	1697
8	'B788'	13.0	1.6	282	882
9	'B789'	16.5	2.1	397	1241
	Average	12.8	1.6	355	1110

Assuming **60** flights crossing ITCZ per day, **320** operational days per year, the annual fuel consumption savings is estimated to be **6.8** million pounds. This is the lower bound for the benefits.

Simulation-Based Analysis using the FAA/Virginia Tech Global Oceanic Model

UrginiaTech

Global Oceanic Model

Weather Conflict Detection and Resolution

The weather conflict detection and resolution is programmed using the rule and strategies derived from:

1) Historical flight analysis

2) FAA advisory circular for thunderstorms (AC-0024C)

Deviation Alternative	Lateral Deviation	Travel Distance in CDO Contours	Min Distance to Severe and Extreme CDO Contours
D1	0 (Flight Plan)	Medium: 28 nm High: 26 nm Severe: 4 nm	$0 \mathrm{nm}$
D2	30 nm to the Right	Medium: 22 nm High: 22 nm	4 nm
D3	50 nm to the Right		24 nm

The traffic is derived from the Traffic Flow Management System (TFMS) for June 24,25,26, 2016 with forecast to 2019.

Medium Traffic 2050 flights in three-day simulation 1051 flights in middle day of simulation High Traffic 4437 flights in three-day simulation 2258 flights in middle day of simulation

Scenarios Modeled using the GO Model

Se	onario Sote	Traffic			
Scenario Sets		Medium	High		
		Medium Traffic,	Medium Traffic,		
	Moderately-Dynamic	Moderately-Dynamic	Highly-Dynamic		
Weether		Weather	Weather		
weather		High Traffic,	High Traffic,		
	Highly-Dynamic	Moderately-Dynamic	Highly-Dynamic		
		Weather	Weather		

No	Seconomica	Weather Conflict Detection	Maximum
INO.	Scenarios	Look-Ahead Horizon	Deviation Angle
1	Onboard Radar	20 minutes ($\sim 160 \text{ nm}$)	75
2	ROMIO-Enabled	25 minutes ($\sim 200 \text{ nm}$)	65
3	ROMIO-Enabled	$30 \text{ minutes } (\sim 240 \text{ nm})$	65
4	ROMIO-Enabled	40 minutes (\sim 320 nm)	65
5	ROMIO-Enabled	60 minutes (\sim 480 nm)	55

Note: the maximum deviation angle is reduced with more look-ahead horizon.

Example : Strategic Decision-Making for Avoiding Convective Weather Beyond Onboard Radar

VirginiaTech

Invent the Future

ROMIO-Enabled Scenario Statistics : Flights that Deviate from Weather and Affected

Fligh	Its affected by traffic deviation and				
riign	to weather	Average	Average	Average	Average
uue		Fuel	Travel	Travel	Greenhouse
	Scenario Set	Consumption	Distance	Time	Gas Emission
		Saving	Saving	Savings	Saving
		(kg)	(nm)	(\min)	(kg)
-	Medium Traffic, Moderately-Dynamic Weather	86	9.1	1.5	271
	Medium Traffic, Highly-Dynamic Weather	84	7.6	1.0	264
-	High Traffic, Moderately-Dynamic Weather	88	8.3	1.4	277
	High Traffic, Highly-Dynamic Weather	91	6.9	1.0	289
-	Average	87	8.0	1.2	275
	0				
Flights	that deviated from their original track	Average	Average	Average	Average
Flights due to	that deviated from their original track weather	Average Fuel	Average Travel	Average Travel	Average Greenhouse
Flights due to	that deviated from their original track weather Scenario Set	Average Fuel Consumption	Average Travel Distance	Average Travel Time	Average Greenhouse Gas Emission
Flights due to	that deviated from their original track weather Scenario Set	Average Fuel Consumption Saving	Average Travel Distance Saving	Average Travel Time Savings	Average Greenhouse Gas Emission Saving
Flights due to	that deviated from their original track weather Scenario Set	Average Fuel Consumption Saving (kg)	Average Travel Distance Saving (nm)	Average Travel Time Savings (min)	Average Greenhouse Gas Emission Saving (kg)
Flights due to	that deviated from their original track weather Scenario Set Medium Traffic, Moderately-Dynamic Weather	Average Fuel Consumption Saving (kg) 120	Average Travel Distance Saving (nm) 13.6	Average Travel Time Savings (min) 1.7	Average Greenhouse Gas Emission Saving (kg) 379
Flights due to	that deviated from their original track weather Scenario Set Medium Traffic, Moderately-Dynamic Weather Medium Traffic, Highly-Dynamic Weather	Average Fuel Consumption Saving (kg) 120 119	Average Travel Distance Saving (nm) 13.6 12.7	Average Travel Time Savings (min) 1.7 1.7	Average Greenhouse Gas Emission Saving (kg) 379 377
Flights due to	that deviated from their original track weather Scenario Set Medium Traffic, Moderately-Dynamic Weather Medium Traffic, Highly-Dynamic Weather High Traffic, Moderately-Dynamic Weather	Average Fuel Consumption Saving (kg) 120 119 97	Average Travel Distance Saving (nm) 13.6 12.7 14.1	Average Travel Time Savings (min) 1.7 1.7 1.6	Average Greenhouse Gas Emission Saving (kg) 379 377 306
Flights due to	 that deviated from their original track weather Scenario Set Medium Traffic, Moderately-Dynamic Weather Medium Traffic, Highly-Dynamic Weather High Traffic, Moderately-Dynamic Weather High Traffic, Highly-Dynamic Weather 	Average Fuel Consumption Saving (kg) 120 119 97 122	Average Travel Distance Saving (nm) 13.6 12.7 14.1 15.7	Average Travel Time Savings (min) 1.7 1.7 1.6 2.0	Average Greenhouse Gas Emission Saving (kg) 379 377 306 386

VirginiaTech Invent the Future Using ROMIO May Reduce in the Number of Lateral Deviation Maneuvers in all **Regions Simulated** 150[°] W 30[°] W 90[°] W 30[°] E 10 Reduction in Deviation Maneuvers to Flights Flown (%) 75[°] N 9 T, NA2: 0.2% 8 45[°] N 7 NA1: 10.3% CA1: 0.5% 6 15[°] N CA2 :3.5 % 8 5 4 SA: 2.8% 15[°] S 3 2 45[°] S 0

Air Transportation Systems Laboratory

Another Potential Benefit: Injury and Airframe Cost Mitigation

Source: Aviation Herald (http://avherald.com/h?article=4b97224e)

Historical Flights with Injuries and Cost of Injuries

(a) Types of convective-induced incidents.

VirginiaTech

Invent the Future

(b) Distribution of number of injuries.

 Table 9: Annual convective-induced turbulence statistics.

Injury Category	Number of Injuries (2009-2014)	Percentage of Injuries	FAA Injury Value
Serious	26	57%	1,084,469
Minor	20	43%	30,947

Source: Campbell et al. (2015) – MIT Lincoln Laboratory Study

Potential ROMIO Benefits to Avoid Injuries and Aircraft Damage

 $P(C) = P(I \cap E) = P(E) \times (I|E)$ where:

 $\mathbf{P}(\mathbf{C})$ is the probability of convective-induced incidents,

P(I) is the probability incidents,

P(E) is the probability of high exposure events in event type 4, P(E)=(0.017, 0.027)

P(I|E) is the conditional probability of incidents in high exposure events occur in event type 4,

 $N(C) = E(Op) \times P(C)$ where:

N(C): is number of convective-induced incidents,

E(Op): is the expected number of annual flight operations crossing the ROMIO-covered airspace,

P(C): is the probability of convective-induced incidents,

P(C) = (0.00008, 0.00012)

 $E(Op_{NorthAmerica-SouthAmerica}) = 112,284$ flights per year

 $E(Op_{NorthAmerica-SouthwestPacific}) = 26,929$ flights per year

 $N(C_{NorthAmerica-SouthAmerica}) = 112,284 \times (0.00008, 0.00012) \simeq [9-15]$

 $N(C_{NorthAmerica-SouthwestPacific}) = 26,929 \times (0.00008, 0.00012) \simeq [2-4]$

Table 10: Total benefits of the ROMIO application in saving convective-induced incidents.

Dorion	Damage	Injury	Expected Number	Expected Cost	Total
negion	Type	Category	of Occurrence	per Unit (\$)	$\operatorname{Cost}(\$)$
North America	Injury	Serious	4.1	1,084,469	4,446,323
South America	injury	Minor	3.1	$30,\!947$	95,936
	Aircraft damage		1	1,000,000	1,000,000
Total					$5,\!542,\!259$
North America	Injury	Serious	1	1,084,469	1,084,469
Southwest Pacific	injury	Minor	0.75	$30,\!947$	23,210
	Aircraft damage		0.25	1,000,000	$250,\!000$
Total					$1,\!357,\!679$

Summary of Findings (I)

Survey

- More than 110 surveys with ROMIO questions answered
- 54% of the flights involved in the survey performed a weather deviation
- Generally, pilots offer positive feedback about ROMIO
- Pilots comment that ROMIO provides 10-minute additional situation awareness to plan weather deviations vs on-board radar

Convective Weather Deviation Analysis

- Analysis of 18,326 commercial flights shows that strategic weather deviations using ROMIO could save 1.6 minutes per flight (355 lbs savings per flight)
- Annual fuel consumption savings of 6.8 million pounds of fuel savings

Summary of Findings (2)

Simulated-Based Benefits Analysis

- Considered South America and North Atlantic traffic
- 115 kilograms (253 lbs.) saved per flight
- 1.8-minute travel time savings
- Annual fuel savings: \$15.3 million
- Injury and Airframe Mitigation Cost
 - 20% reduction in potential exposure to severe convective weather events
 - Annual savings derived from ROMIO demonstration
 - \$5.54 million in the Atlantic Ocean
 - \$1.35 million in the South Pacific Ocean