

URBAN MODELING CAPABILITIES AT ENVIRONMENT CANADA

Sylvie Leroyer¹, Stéphane Bélair¹, Syed Husain¹, Simon Pellerin²

1. Environmental Numerical Prediction Research (E-RPN), Meteorological Research Division, Science and Technology Branch, EC 2. Québec Region Lab, EC

Workshop on the SIMMER project, Toronto, 24 October 2013

Urban Modeling Capabilities at Environment Canada

Research

- Projects with Canadian Universities and observational network (EPiCC, MUSE)
- International project TOMACS (Tokyo, Extreme Weather forecasting)
- Support to special events
 - PanAm / ParaPanAm 2015
 - Olympics Games Tokyo 2020 ?
- Numercial Weather Prediction (NWP)
 - Development of new systems for weather forecasting
 - : Higher resolution + Urban effects

End-users

project studies of mitigation strategies (QC)

Support to PanAm 2015 : NWP Integrated System

Support to PanAm 2015 : NWP Integrated System

External Surface Modeling

GEM-SURF (200 m)

Canopy/soil physical processes

- TEB (urban)
- ISBA (vegetation), or SVS

Continuous cycle \rightarrow daily surface forcing

Low cost

The core of the Canadian Urban modeling system

Research : urban GEM-Surf over Montreal

→ Urban classes (from semi-automatic 60-m classification (Lemonsu et al. 2006)

VERIFICATION AGAINST MODIS

VERIFICATION AGAINST MODIS

Forecast of the Montreal Canopy Urban Heat Island

Nocturnal 2m Air Temperature (simulation, 120m) 6 July, 01:00 LST

Intra-urban near-surface UHI

20 Ы ο

▶ max UHI : 5-6 ° C

Generation of Country-wide Urban Input Parameters

Support to PanAm 2015 : NWP Integrated System

Support to PanAm 2015 : NWP Integrated System

Research : Coastal Urban Modeling with GEM-LAM

Leroyer et al. (2013), in revision

High buildings
Mid-high buildings
Low buildings
Very low buildings
Sparse buildings
Industrial areas
Roads and parkings
Road mix
Dense residential
Mid-density residential
Low-density residential
Mix of nature and built

- \rightarrow Sea-breeze event (14-15 Aug. 2008)
- \rightarrow EPiCC IOP (Environment Prediction in

EPiCC sites

Canadian Cities network)

- \rightarrow Nested in RDPS
- \rightarrow 33 hours studied

Evaluation of the Urban Thermal Forcing

Radiative Surface Temperature

Satellite view angle : -12 degrees. Time : 1100 LT

Run 250 m

From Run 250 m (1km)MODIS (1 km)(upscaled, + spatial filter)(MOD11A1, satellite Terra)

Influence of the model grid spacing + urban effects

Statistics over urban pixels	Resolution	250 m	1 km	2.5 km
With Urban effects	STDE	2.6	3.0	3.4
No urban effects	STDE	3.6	3.4	4.3

<u>Convergence zone over the suburban areas</u> Influence of the grid spacing in the model

<u>Convergence zone over the suburban areas</u> Influence of the grid spacing in the model

Convergence zone over the suburban areas Influence of the grid spacing in the model

Evaluation of the Mixed Layer Height (Ceilometer)

- Morning deepening of the Mixed Layer height
- Drops observed subsidence

Influence of the urban area on the Convergence Lines

Research : Multi-Level Coupling (Urban Canopy)

CaM-TEB (Canadian Multilayer version of TEB)

- Several model levels intersect the buildings.
- Variable building heights exist within a grid cell.

- TEB is used for canopy surface temperatures assuming:
 - No differential heating.
 - All roofs in a grid cell have equal temperatures.

(Husain et al. 2013)

Improvement of the near-neutral layer forecasting with CaM-TEB in Oklahoma City (Joint Urban 2003)

Slope of temperature gradient

Developments : Heat Stress Indices in NWP systems

Main external factors influencing the human body

- •Air temperature (ok)
- •Air humidity (ok)
- •Wind velocity (ok)
- Radiations
- —> mean radiant temperature

Radiative budget takes into account multiple reflexions

Conclusions

- Numerical Runs going on over the region of Toronto
- Current optimizations and development of the Integrated system
- Case studies:
 - Extreme weather
 - 8 July 2013 (... Very complex case: not only urban)
 - Plan to run Heat Waves events (test of thermal indices)

Lake breeze at 10-m AGL (250 m grid spacing)

I nanks tor your attention ! Lyour strention i

Sylvie.leroyer@ec.gc.ca

