DLR's Wake Vortex and Turbulence Research

F. Holzäpfel, H. Wilms, M. Bramberger, U. Schumann, S. Körner, A. Dörnbrack, C. Schwarz^{*} Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre, Oberpfaffenhofen ^{*}Institut für Flugsystemtechnik, Braunschweig Germany

Knowledge for Tomorrow

Wake Vortex Encounter over the Arabian Sea

- Wake Vortex Prediction and Warning Systems WSVBS, WEAA
- Mountain Wave Hazards on Aviation

Wake Vortex Encounter over the Arabian Sea encounter situation – 7 Jan 2017, 8:39 UTC

satellite image of visible channels of Indian KALPANA-1 satellite, 8:45 UTC, 7 Jan 2017 6 min after the encounter.

analysis based on interim report of German Federal Bureau of Aircraft Accident Investigation (BFU): "Bulletin Unfälle und Störungen beim Betrieb ziviler Luftfahrzeuge, Januar 2017," Bundesstelle für Flugunfalluntersuchung (BFU), Braunschweig, Germany, 2017, p. 43. https://www.bfu-web.de/DE/Publikationen/Bulletins/bulletins_node.html

encounter situation - 7 Jan 2017, 8:39 UTC

- 08:38:55 (1) bank angle right 5°, aileron deflection left, fluctuating vertical accelerations
- 08:39:04 (2) strong a/c response begins
- (3) bank angle 42°, aileron 20°, vertical acceleration 1.6 g
- (4) 08:39:06 rolling left -31°, downwards acceleration -3.2 g, autopilot shut off, IRS inoperative ⇒ subsequent attitude angles unknown
- 08:39:09 altitude loss of 2700 m

Meteorological Environment

Integrated Forecasting System (IFS) of the European Center for Medium Range Weather Forecasts (ECMWF) Icosahedral Nonhydrostatic Model (ICON) of the German Weather Service (Regine Zinkhan, DWD)

derived from ECMWF temperature & wind profiles

Schumann, U., "On conditions for contrail formation from aircraft exhausts," Meteorologische Zeitschrift 5 (1) 1996, pp. 4-23. U. Schumann, T. Gerz, "Turbulent mixing in stably stratified shear flows," *Journal of Applied Meteorology* **34** (1) 1995, pp. 33-48.

Climatology – Zonal mean potential temperature, wind and Brunt-Väisälä frequency

derived from 39 years of ERA-Interim data

Climatology – Zonal mean potential temperature, wind and Brunt-Väisälä frequency

derived from 39 years of ERA-Interim data

Airborne Probabilistic 2-Phase wake vortex model – P2P^a with A388 wind & ECMWF data 10% inboard loading

Holzäpfel F. 2003: A Probabilistic Two-Phase Wake Vortex Decay and Transport Model, Journal of Aircraft **40**, 323-331. Holzäpfel F., Robins R.E. 2004: Probabilistic Two-Phase Aircraft Wake-Vortex Model: Application and Assessment, J. Aircraft **41**, 1117-1126. Holzäpfel F. 2006: Probabilistic Two-Phase Aircraft Wake-Vortex Model: Further Development and Assessment, J. Aircraft **43**, 700-708.

Multi-model ensemble wake vortex prediction combining WV models of NASA and DLR A388 wind & ECMWF data for vortex decay 10% inboard loading

S. Körner, F. Holzäpfel, "Multi-Model Wake Vortex Prediction", Aircraft Engineering and Aerospace Technology **88** (2) 2016. <u>http://dx.doi.org/10.1108/AEAT-02-2015-0068</u>

S. Körner, N.N. Ahmad, F. Holzäpfel, R.L. Van Valkenburg: MultiModel Ensemble Methods for Prediction of Wake-Vortex Transport and Decay, J. Aircraft **54** (5) 2017, 1849-1859. <u>http://dx.doi.org/10.2514/1.C034287</u>

Results of highly resolved numerical simulations (LES) scaled to A388 vortices (10% inboard loading)

T. Misaka, F. Holzäpfel, T. Gerz, M. Manhart, F. Schwertfirm, Vortex bursting, tracer transport, and decay mechanisms of a counter-rotating vortex pair, Physics of Fluids 24 (2) 2012, 25104-1 - 25104-21, doi: 10.1063/1.3684990

Wake Encounter Avoidance & Advisory (WEAA)

- airborne information and warning system
- prevention of dangerous wake vortex encounters in all phases of flight

- functionality as safety net / assistance system (increase of situational awareness)
- identification of a predicted, imminent or even current wake vortex encounter
- resolution of conflict by recommendation of tactical small-scale evasion manoeuvres

T. Bauer et al., "In-Flight Wake Encounter Prediction with the Wake Encounter Avoidance and Advisory System," *AIAA 2014-2333*, 2014. doi: 10.2514/6.2014-2333

Wake Encounter Avoidance & Advisory (WEAA)

flight tests in April 2014 and Nov/Dec 2016 with DLR's Falcon and ATRA new tests planned with NRC's T33 (WAVE App)

airborne weather information + airborne wake vortex prediction AC 2 53-1º M)) **On-board** prediction: 1)] 230 K 22 m s-1 AC 1) ADS-B ADS-B + T = 216.7 ± 0.2 K wind NWP P2Pa u = 22.7 ± 0.45 m s⁻¹ AC 1: Best estimate u(z),v(z),T(z),p(z)T = 217.7 ± 0.45 K Uncertainties

encounter on 11/04/2014

I. Sölch et al. "Performance of on-board wake vortex prediction system employing various meteorological data sources", J. Aircraft **53** 2016. DOI: 10.2514/1.C033732

WEAA Encounter Video

meteo measurements SODAR/RASS USA

3 gates, 0.3 - 1 NM

3

numerical weather pred. **COSMO-Airport** 10 gates, 2 - 11 NM

wake-vortex prediction P2P

envelopes for y(t), z(t), Γ (t) in 13 gates for individual pairings

safety area prediction SHAPe ellipses for individual followers

temporal a/c separations for individual

> procedures AMAN

STG, MSR, MSL, ICAO

optionally a/c type comb. Flight Plan

a/c type, arrival time

glide path adherence statistics FLIP

standard deviations in 13 gates

wake-vortex monitoring LIDAR 3 planes, 0.3 - 1 NM

conflict detection validation of vortex predictions

Wake-Vortex Prediction & Monitoring System WSVBS

WSV Strategy Animated strong crosswind

modified staggered leftreduced sep. single rwy

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, C. Schwarz, The Wake Vortex Prediction and Monitoring System WSVBS Part I: Design, Air Traffic Control Quarterly, Vol. 17, No. 4, 2009, pp. 301-322. <u>https://doi.org/10.2514/atcq.17.4.301</u> T. Gerz, F. Holzäpfel, W. Gerling, A. Scharnweber, M. Frech, K. Kober, K. Dengler, S. Rahm, The Wake Vortex Prediction and Monitoring System WSVBS Part II: Performance and ATC Integration at Frankfurt Airport, Air Traffic Control Quarterly, Vol. 17, No. 4, 2009, pp. 323-346. <u>https://doi.org/10.2514/atcq.17.4.323</u>

F. Holzäpfel, K. Dengler, T. Gerz, C. Schwarz, Prediction of Dynamic Pairwise Wake Vortex Separations for Approach and Landing, AIAA Paper 2011-3037, 3rd AIAA Atmospheric Space Environments Conference, 27-30 June 2011, Honolulu, Hawaii, 15 pages.

Mountain Wave (MW) Hazards on Aviation Propagating MWs

Case study on stall warning event of the DLR research aircraft HALO caused by vertically propagating MWs

- In situ aircraft measurements
 - characterisation of MWs (amplitudes, wavelength, energy- & momentum fluxes)
 - Comparison to ECMWF and WRF forecasts
- Numerical simulations
 - 3D idealized simulations to analyse relevant processes
 - Attribution of measured fluctuations to propagating MWs

Bramberger et al., 2018, JAMC

Mountain Wave (MW) Hazards on Aviation MW Turbulence

Case study on MWT encounter of HALO above Iceland in lower stratosphere

- > In situ aircraft measurements
 - Calculation of TKE and EDR
 - Comparison to turbulence diagnostics based on ECMWF (GTG) and WRF
- Numerical simulations
 - Identification of MW breaking as cause for strong turbulence
 - Possible intensification of turbulence due to superposition of MWs

under preparation:

Bramberger et al.: Impact of model resolution on MWT predictability Wilms et al.: Intensification of MWT due to superposition of MWs

Valid: 13.10.2016, 15UTC (step 03 h from 13.10.2016, 12 UTC), FL430

Further Research Topics

Focus on MW turbulence and predictability Plans for analyzing turbulence distribution along jets

> Large dataset available from former research campaigns with high quality in-situ meas.

- Further case studies
- Statistical analysis of turbulence distribution
- ➤ Collaborations:
 - German Weather Service (DWD): Turbulence forecasts with ICON
 - LITOS (balloon based turbulence measurements in the stratosphere)
- Optical turbulence: first study started using GTG for planning of astronomical observations (Uni Durham)

Interested in EDR measurements from commercial aircraft

Strong interest in collaboration for measurement campaigns (<u>martina.bramberger@dlr.de</u>, <u>henrike.wilms@dlr.de</u>)

wishing you always smooth and safe flights

Conclusions

- accident cannot be explained by meteorological disturbances
- on contrails formed that could have warned the pilots
- WV encounter appears plausible employing different methods (P2P^a, MME, LES) assuming root loading of the A388 (10% reduced b₀)
- encounter occurs right before onset of rapid decay such that A388 vortices are still very strong
- vortex deformation according to Crow instability close to vortex linking
- WV descend deeper & live longer in tropics than at mid-latitudes due to weaker thermal strat.
- OLR's WEAA System might have avoided the encounter
- initial vortex spacing highly relevant for prediction skills of fast-time models
- more detailed analysis will be published after release of final BFU report

Vortex descent and Brunt-Väisälä frequency, N_{BV}

bouyancy force

wake vortex descent distance¹

¹U. Schumann, A. Heymsfield, "On the lifecycle of individual contrails and contrail cirrus," *Meteorological Monographs* **58** (3) 2017, 3.1-3.24, doi: 10.1175/AMSMONOGRAPHS-D-16-0005.1

Multi-model ensemble wake vortex prediction

combining WV models of NASA and DLR

S. Körner, F. Holzäpfel, "Multi-Model Wake Vortex Prediction", Aircraft Engineering and Aerospace Technology **88** (2) 2016. http://dx.doi.org/10.1108/AEAT-02-2015-0068

S. Körner, N.N. Ahmad, F. Holzäpfel, R.L. Van Valkenburg: MultiModel Ensemble Methods for Prediction of Wake-Vortex Transport and Decay, J. Aircraft **54** (5) 2017, 1849-1859. <u>http://dx.doi.org/10.2514/1.C034287</u>