The Development and operational implementation of GRAPES Global ensemble predication system at CMA

> Xiaoli Li, Jing Chen, Yongzhu Liu Fei Peng, Zhenghua Huo

Numerical Weather Prediction Centre, CMA, Beijing, China

# Outline

- SV-based initial perturbations
- Representations of model uncertainties
- The performances of GRAPES-GEPS
- Summary and future work

# **The GRAPES Global Singular Vectors**

- Global/Regional Assimilation Prediction System (GRAPES) at CMA
- **GRAPES** global SVs with the Euclidean vector  $\hat{X}_i(t_0)$  are calculated as follows:

$$\left(\boldsymbol{E}^{\frac{-1}{2}}\boldsymbol{L}^{T}\boldsymbol{P}^{T}\boldsymbol{E}\boldsymbol{P}\boldsymbol{L}\boldsymbol{E}^{\frac{-1}{2}}\right)\hat{\boldsymbol{X}}_{i}(t_{0}) = \lambda_{i}^{2}\hat{\boldsymbol{X}}_{i}(t_{0})$$

- *L* : Tangent linear model (TLM)
- L<sup>T</sup>: Adjoint model (ADM)
- P: Projection operator
- E: Total energy norm

$$X_{i}(t_{0}) = \mathbf{E}^{-\frac{1}{2}} \hat{X}_{i}(t_{0})$$
$$X = (u', v', (\theta')', (\Pi')')^{T}$$

• Total energy norm **E** is based on variables of GRAPES TLM

$$\begin{aligned} \iiint_{V} \left( \frac{\rho_{r} \cos\varphi}{2} (u')^{2} + \frac{\rho_{r} \cos\varphi}{2} (v')^{2} + \frac{\rho_{r} \cos\varphi C_{P} T_{r}}{(\theta_{r})^{2}} ((\theta')')^{2} + \frac{\rho_{r} \cos\varphi C_{P} T_{r}}{(\Pi_{r})^{2}} ((\Pi')')^{2} \right) dV \\ u': \text{ the perturbations of } u \\ v': \text{ the perturbations of } v \\ ((\theta')': \text{ the perturbations of perturbed potential temperature } \theta' \\ ((\Pi')': \text{ perturbations of perturbed Exner pressure } \Pi' \end{aligned}$$

# **GRAPES Singular Vectors** (Version 1)

- 48h optimization time interval(OTI)
- 2.5 degree horizontal resolution and 36 vertical levels
- Localized regions: Northern Hemisphere extra-tropics (30°–80°N); Southern Hemisphere extra-tropics (30°–80°S)
- TLM and ADM (version 1): dynamical core of GRAPES\_GFS without Linearized physics schemes
- The trajectory of TLM is from forecast of dynamical core of GRAPES\_GFS
- Iteration times of Lanczos Algorithm is 50,and 30 SVs are obtained approximately



the shallow unreasonable fastgrowing structures in the lower level of model near surface was observed in evolved SVs.

# **Typical total-energy SVs**

## • The typical structures of SV based on total-energy norm

Buizza and Palmer(1994); Lawrence et al (2009); Leutbecher (2012)

#### • At initial time:

- the energy maximum of SVs is located in the middle troposphere, and potential energy is dominant
- westward tilt with height at initial time

### • At final time

- the upward energy transfer to higher troposphere and downward energy transfer toward lower troposphere, the kinetic energy of SVs is dominant at final time
- upscale energy transfer with a pronounced final-time energy spectral



# Improved GRAPES SVs (Version 2)

- Localized regions: Northern Hemisphere extra-tropics (30°– 80°N); Southern Hemisphere extra-tropics (30°–80°S)
- TLM and ADM (version 2) with Linearized PBL scheme
- The trajectory of TLM is from forecast of GRAPES\_GFS



- ✓ Typical energy vertical profile observed in GRAPES SVs at initial time and final time.
- The energy spectrum of GRAPES SVs shows upscale energy transfer at final time





## The distribution of improved GRAPES NH SVs (1)

SV01- potential temperature perturbation (\*1000), 8 May 2013,00UTC



Typical *westward tilt* structure is observed in GRAPES SVs at initial time, and barotropic structure without obvious tilt is shown at final time

## The distribution of improved GRAPES NH SVs (2)

#### SV01- u wind perturbation (\*1000), 8, May, 2013,00UTC

#### Initial time

Final time

![](_page_7_Figure_4.jpeg)

Besides the *westward tilt* structure SVs at initial time, and *Upward energy transfer* and *downward energy transfer* (kinetic energy) are observed at final time

## Improving computational efficiency of GRAPES SVs

- The computation of ADM in SV calculation is most time consuming part
- The computation of the ADM are improved greatly by two aspects:
  - optimize the use of GCR in the ADM
  - increase the computation nodes
- The optimization reduces the computation time from 73 minutes to 55 min on IBM Flex P460

![](_page_8_Figure_6.jpeg)

## **SV-based Initial Perturbations for GRAPES ensemble**

The initial perturbations are obtained from the singular vectors via a multivariate Gaussian sampling technique (Leutbcher, 2008)

#### Main steps :

(1) Calculating the rescale factors for the SVs based on standard deviation of analysis error:  $\beta_i$ 

$$f_j^2 = \sum_{i=1}^N (u_i'/e_u)^2 + (v_i'/e_v)^2 + ((\theta_i')'/e_\theta)^2 + ((\Pi_i')'/e_\Pi)^2$$

$$\beta_j = \gamma / \overline{f_j}$$

The GRAPES SVs:  $\hat{X}^{(j)} = (u', v', ((\theta')', ((\Pi')')))$ 

 $e_u$ ,  $e_v$ ,  $e_{\theta}$ ,  $e_{\Pi}$ : estimated magnitude of standard deviations of analysis errors  $\gamma$ : The empirical parameter to generate adequate ensemble spread

(2) Using coefficients from random vector with Gaussian distribution to make linear combinations of rescaled SVs to get linearly sampled perturbations

$$P_i = \sum_{j=1}^{N} \alpha_{i,j} \beta_j \hat{X}^{(j)}$$
  $i = 1, 2, ..., M$ 

the coefficients  $\alpha_{i,j}$  are random number with distribution of N(0,1)

## **SV-based initial perturbations for GRAPES-GEPS**

#### (3) The SV-based initial perturbations with the component of evolved SVs

Evolved SVs provided an easy way to include more stable and large-scale directions in generation of EPS initial perturbation (*Barkmeijer et. al, 1998*)

$$Pert_{i} = (1 - a)P_{i}(d, 0) + a EP_{i}(d - 2, +2d)$$

$$INISV EVOSV$$

(4) Adding and subtracting linearly combined SVs from analysis (from GRAPES 3Dvar/4Dvar) to construct perturbed initial conditions for GRAPES global ensemble

$$X_i = X_A \pm Pert_i$$

## **The Structure of Initial Perturbations**

500 hPa geopotential height, temperature perturbation (shaded); wind vector perturbation (arrows)

![](_page_11_Figure_2.jpeg)

20 May, 2013,00UTC

## **Ensemble Experiments based on Initial Perturbations**

- Exp. INISV: Initial perturbations generated from initial SVs
- Exp. EVOSV : initial perturbations generated from initial SVs and evolved SVs ,coefficient a is 0.1)

#### **Configuration of GRAPES-GEPS**

| Experiment period               | May 1- 31, 2013 ; 31days                                                     |  |  |  |
|---------------------------------|------------------------------------------------------------------------------|--|--|--|
| TLM/ ADM model for SVs          | Horizontal resolution: $2.5^{\circ} \times 2.5^{\circ}$ ; Vertical level: 60 |  |  |  |
| Linear physics in TLM/ADM model | Linear PBL scheme                                                            |  |  |  |
| SVs computation area            | NH :30 $^{\circ}$ N~80 $^{\circ}$ N ; SH : 80 $^{\circ}$ S~30 $^{\circ}$ S   |  |  |  |
| OTI of SVs computation          | 48h                                                                          |  |  |  |
| Ensemble size                   | 41 (40 perturbed member + control)                                           |  |  |  |
| Forecast length of EPS          | 10 days                                                                      |  |  |  |
| Initial analysis                | GRAPES-3DVar (0.5 $^\circ$ $	imes$ 0.5 $^\circ$ ; 60 levels)                 |  |  |  |
| resolution of GRAPES_GEPS       | Horizontal resolution: $0.5^{\circ} \times 0.5^{\circ}$ ; Vertical level: 60 |  |  |  |

### **RMS ERROR AND ENSEMBLE SPREAD**

**Exp**:INISV

![](_page_13_Figure_1.jpeg)

## Ensemble Spread difference (EVOSV-INISV)

![](_page_14_Figure_1.jpeg)

• Larger ensemble spread in EVOSV experiment at different lead times

### SVs for tropical cyclones (TCSV) and initial perturbations

![](_page_15_Figure_1.jpeg)

#### SVs-based Initial perturbation with TCSVs included

$$Pert_{i} = (1 - a) P_{i}(d, 0) + a EP_{i}(d - 2, +2d) + b TCP_{i}(d, 0)$$

$$INISV EVOSV TCSV$$

# **Tropical cyclone tracks from GRAPES-GEPS**

![](_page_16_Figure_1.jpeg)

- SV-based initial perturbation
- Representations of model uncertainties
- The performance of GRAPES-GEPS
- Summary and future work

## **Stochastic Physics** (1) -SPPT

Stochastically perturbed physics tendencies (SPPT) scheme

$$\delta X_p = \psi(\lambda, \varphi, t) \ \delta X$$

![](_page_18_Figure_3.jpeg)

$$\psi(\lambda, \varphi, t) = \mu + \sum_{l=1}^{\infty} \sum_{m=-l}^{\infty} \alpha_{l,m}(t) Y_{l,m}(\lambda, \varphi)$$
  
$$\alpha_{l,m}(t + \Delta t) = e^{-\Delta t/\tau} \alpha_{l,m}(t) + \sqrt{\frac{4\pi\sigma^2(1 - e^{-2\Delta t/\tau})}{L(L+2)}} R_{l,m}(t) \Longrightarrow \xrightarrow{\text{First-order auto-regressive process}}$$

(1 1)

11/11

Random pattern

 $(1 (1 + 1) - \dots + \nabla l + \nabla l)$ 

- □ following Gaussian distribution
- □ temporal decorrelation scales : 6h
- □ the lower and upper limit of random values: [0.5,1.5]
- Applying stochastic perturbation to model variables
   (u,v,T,q)

#### Structure of random pattern used in SPPT

![](_page_19_Figure_1.jpeg)

- (a) the horizontal distribution;
- (b) time series of the random number value at an arbitrary model grid

#### The ensemble experiments with SPPT

exp1: INISVS exp2: INISVS+SPPT

![](_page_20_Figure_2.jpeg)

## **Stochastic Physics** (2) **-SKEB**

Stochastic kinetic energy backscatter (**SKEB**) scheme

- ✓ SKEB introduces horizontal wind (u,v) stochastically forcing terms though an added tendency terms:
  - (Charron et. al. 2010)

$$\begin{pmatrix} \frac{\partial u}{\partial t} \end{pmatrix}_{\text{SKEB}} = S_u \qquad S_u = -\frac{1}{a} \frac{\partial F_{\psi}}{\partial \phi} \\ \left( \frac{\partial v}{\partial t} \right)_{\text{SKEB}} = S_v \qquad S_v = \frac{1}{a \cos \phi} \frac{\partial F_{\psi}}{\partial \lambda}$$

#### **Stream-function forcing**

$$F_{\Psi} = \frac{\alpha \Delta x}{\Delta t} \underline{\Psi(\lambda, \phi, t)} \sqrt{\Delta t \hat{D}(\lambda, \phi, \eta, t)},$$

3D random field

**Dissipation rate** 

Random field ( same random generator as SPPT with

specified parameters)

from explicit horizontal diffusion

$$D_{\rm num} = \sqrt{\left(u \times du\right)^2 + \left(v \times dv\right)^2}$$

## Structure of u, v wind forcing of SKEB

![](_page_22_Figure_1.jpeg)

12 h forecast at model level 30 (initialized at 00 UTC 13 May, 2013)

### **The GRAPES-GEPS with SKEB**

![](_page_23_Figure_1.jpeg)

- SV-based initial perturbation
- The model uncertainties
- The performance of GRAPES-GEPS
- Summary and future work

## **Operational GRAPES-GEPS (since Dec. 2018)**

#### GRAPES-GEPS has been operationally running at CMA since 26 Dec 2018, replacing previous operational T639-GEPS

### T639-GEPS

| Forecast Model       | T639L60                              | Forecast Model       | GRAPES GFS                            |
|----------------------|--------------------------------------|----------------------|---------------------------------------|
| Resolution           | 0.28°; 60 layer top at<br>0.1hPa     | Resolution           | 0.5° ×0.5°; 60 layer<br>top at 3hPa   |
| Initial Perturbation | Breeding Vector-based                | Initial Perturbation | SVs-based                             |
| Model perturbation   | SPPT                                 | Model perturbation   | SPPT; SKEB                            |
| Ensemble Size        | 15 (14 perturbed<br>members+control) | Ensemble Size        | 31 (30 perturbed<br>members +control) |
| Forecast length      | 15 days                              | Forecast length      | 15 days                               |

### Performance of GRAPES-GEPS compared with T639-GEPS (1)

![](_page_26_Figure_1.jpeg)

#### Performance of GRAPES-GEPS compared with T639-GEPS (2)

![](_page_27_Figure_1.jpeg)

### Performance of GRAPES-GEPS compared with T639-GEPS (3)

#### Score cards (CRPS; Ens Mean RMSE)

![](_page_28_Figure_2.jpeg)

Overall, GRAPES-GEPS has better performance than T639-GEPS

# **Performance of operational GRAPES-GEPS**

#### (201901 - 201905)

![](_page_29_Figure_2.jpeg)

## Forecast of blocking high at middle range

### Example : 00 UTC 5 Feb.2019 The development Ural blocking high before breakout of cold wave

![](_page_30_Figure_2.jpeg)

## **Forecast for onset of South China Sea Monsoon 2019**

## - The monsoon index

- Monitor Area of South China Sea monsoon 850hpa (10º-20ºN, 110º-120ºE)
- 850hpa Zonal wind and pseudo-equivalent potential temperature are used as index of onset of monsoon ( by National Climate Center of CMA )

![](_page_31_Figure_4.jpeg)

Dot line - Obs Solid lines – forecasts at 1d,5d,7d,10d , and 14d

# Summary and future work

- SV-based initial perturbation contribute the major performance of GRAPES-GEPS: ensemble spread and forecast skills
- The empirical parameters in the generation of SV-based initial perturbation will be tuned when GRAPES model is upgraded
- The improvement for TC SVs will be focused on the improvement of linearized moist physics
- The model uncertainty of GRAPES-GEPS will be focused on the improvement of existed SPPT and SKEB