Turbulence Impact Mitigation Workshop 3

Next Generation World Area Forecast System Turbulence Forecasts

Presented by Claire Bartholomew, WAFC London and Matt Strahan, WAFC Washington

Current WAFS Turbulence Product

Maximum Blended CAT

Two provider states, WAFC London and WAFC Washington

Max and a mean turbulence "potential"

1.25 degree horizontal resolution grid. T+6 to T+36 3 hour time steps

WAFS Improvement Schedule

2020

- Turbulence Severity (EDR)
- Horizontal resolution increased to 0.25 degrees

2022

- Temporal resolution T+6 to T+24 in 1 hour increments
- Temporal resolution T+27 to T+48 in 3 hour increments

2024

• Probabilistic Severity (EDR)

ROC Plots of GTG vs current WAFS

- GTG fractionally higher but this is lower resolution ensemble data (control).
- Next trial (underway) uses (~10km) global deterministic data

Turbulence Climatology: AIM

- To generate MOG turbulence climatology using database of automated aircraft observations
- To attempt identification of turbulence events generated by convection and mountain waves, and start to build a climatology of these

Study will ultimately aim:

- To identify areas where MOG turbulence is more likely, for use in the aviation community
- To provide a basis for future studies of turbulence
- To aid future development of turbulence indicators

Aircraft observational data used

- Archive of automated aircraft measurements
 - Global Aircraft Data Set (GADS) aircraft observations
 - ~13 years worth of data available, but need to re-quality control the data for use. Currently 7 years
 of data has been re-qc'ed
 - Data includes vertical acceleration, from which DEVG is calculated
 - Main area of coverage indicated below:

Percentage of Turbulence Obs that are Moderate or Greater (MOG)

- Calculation of (total number of MOG obs)/(total number of obs) in a 1° x 1° grid square
- For each month and season for 7 years
 Normalised frequency of MOG observations in January, years 2010-2016 -180 -120 -60 0 60 120 180
- Initial results for January 2010-2016:

Turbulence Hotspots - Greenland

Greenland: January 2010-2016

Turbulence Hotspots -Tropical Atlantic

Tropical Atlantic: January 2010-2016

Combining with other airlines data

Using to verify WAFS turbulence diagnostic

Further QC of more recent aircraft observations

Issues on quality of AMDAR data

NIL • LGT • MOD • SEV

- Includes below FL280
- Includes "bad" aircraft
- Problems with positioning
- Spurious severe reports

Credit: Soo-Hyun Kim Yonsei University

After Quality Control

NIL IGT MOD SEV

Credit: Soo-Hyun Kim Yonsei University

Uncalibrated

GTG combination

* Probabilistic GTG: the percentage of CAT and MWT diagnostics exceeding a certain threshold at given grid points.

Deterministic vs Probabilistic

- Deterministic GTG
- Ensemble mean of EDR
- 15 CAT and 15 MWT
- Max EDR (CAT, MWT)

The Best Probabilistic GTG

- Frequency (%): The number of CAT and MWT exceeding 0.14 EDR value / 15 CAT, 15 MWT at given grid points
- Max Prob. (CAT, MWT)
- ** Definition: A chance of having 10's km size eddy at the given grid box or area

Improve data collection and quality control

Improve algorithm tuning and verification

Create global turbulence database

Define and explain probabilistic turbulence forecasts