Precipitation Variability and Diurnal Cycle of Convection-Permitting Deterministic Simulations versus Mesoscale Multi-Physics Ensemble Simulations: A Preliminary Result from the NASA Downscaling Project

Toshi Matsui, Taka Iguchi, and Wei-Kuo Tao NASA GSFC Code 612 ESSIC UMD

NLDAS Rainfall Diurnal Cycle

-North American Land Data Assimilation-

NLDAS hourly 0.25deg Precip Data

NLDAS 10-year (1998-2007) JJA Rainfall Climatology

Key Points:

*Stage II Radar precip used only to derive temporal disaggregation weights *Sum of hourly CPC precip values equals original daily CPC gauge total Sampled NLDAS2 rainfall at **each hour** on **1/8-grid CONUS map** over 10-year (1998-2007) JJA period. \rightarrow Each 1/8 grid has 920 samples per hour.

10-Year Climatology of JJA Rainfall Diurnal Cycle from NLDAS data

Hovmöller Diagram

Matsui et al. 2010, GRL

Dreary States in Conventional GCMs

Lee et al. 2000

NASA Downscaling Climate Simulation Project

- Regional Climate Model
 - NASA Unified-WRF (NU-WRF) Based on WRF-ARW v3.5.1
- Initial/Boundary Conditions
 - NASA MERRA-2 six-hourly re-analyses over CONUS
- Land Initial Conditions
 - Land Information System (LIS) 10-yr spin-up of Noah LSM
- Nudging (large scale forcing of certain variables to the synoptic scale)
 - Simulations with spectral nudging of p, t, and horizontal winds above the PBL
- Cloud Microphysics
 - GCE 3-ICE with Graupel
- Radiation
 - Goddard 2011
- Planetary Boundary Layer Scheme
 - Mellor-Yamada-Janic
- Land Surface Model
 - Noah LSM

NU-WRF Run List for Rainfall Diurnal Cycle Analysis

Abbreviations	Domain Resolution	Cumulus Parameterization	
4km	4km	Grell 3D	
12km	12km	Grell 3D	
24km G	24km	Grell 3D	
24km GO	24km	Grell 3D with native shallow cumulus component	
24km GW	24km	Grell 3D with the University of Washington shallow cumulus	
24km BO	24km	Betts-Miller-Janjic	
24km KO	24km	The new Kain-Fritsch	
24km SO	24km	The new simplified Arakawa-Schubert	

Hourly rainfall rates in all simulations are regridded to NLDAS 0.25 degree

Calculate diurnal characteristics of rainfall in June, July, August of Year2000

- How does the regional climate model simulate diurnal precipitation cycle better than traditional global climate models?
- How does a convection-permitting regional simulation perform better in comparison with traditional meso-scale simulations?

Diurnal Amplitude [mm/hr]

2000 JJA period

Diurnal-Maxima LST [hour]

7ÓW

70W

2000 JJA period

Diurnal-Minima LST [hour]

Comparison: 4km run and 24km ensemble mean

Summary

- The 4km deterministic run generally performed better than 24km runs, except for overestimation over the coastal regions of Southeast and Florida: this could be biases in particular physics combination (microphysics + dynamics) of this study, so it could be suppressed by tuning some parameters.
- An ensemble mean of the 24km runs showed a much better performance than individual runs, and global climate model (e.g., Lee et al. 2000). The poor performance over the Continental Divide and Great Plains was not sufficiently improved.
- CPU cost (CPU cores × clock time) of the 4km run is about 300 times greater than that of a 24 km run. Thus 24km ensemble approaches are worthy of consideration as a low-cost alternative for simulating rainfall diurnal variability by a regional climate model. (But not sure about climate sensitivity runs associated with propagating meso-scale convection system.)
- 24km grid spacing will be used by next-generation super high-resolution global climate models. So, the problems and findings could be similar and useful.

Future work

- Extend analysis for multiple years
- The analysis of 12km GEOS-5 GCM run

Acknowledgements for NASA downscaling project members

Jonathan Case	ENSCO/MSFC	Joseph Santan
Daniel Duffy	GSFC	Max Suarez
Robert Ferraro	JPL	Wei-Kuo Tao
Takamichi Iguchi	UMD/GSFC	Baijun Tian
Eric Kemp	SSAI/GSFC	Yudong Tian
Jinwon Kim	UCLA/JPL	Duane Waliser
Bin Guan	UCLA/JPL	Weile Wang
Huikyo Lee	JPL	Di Wu
Tsengdar Lee	NASA HQ	Brad Zavodsky
Paul Loikith	Portland State/JPL	
Christa Peters-Lidard	GSFC	William Gutows
Steven Pawson	GSFC	Linda Mearns*
William Putman	GSFC	* External Advis
Brent Roberts	MSFC	

GSFC ello **GSFC GSFC** JPL UMD/GSFC JPL CSU/ARC UMD/GSFC **MSFC**

ki* sors Iowa State Univ. **NCAR**

