Creating Test Environments for Assessing UAS Performance

Flavio NOCA
Professor of Aerodynamics

Guillaume CATRY
CEO
Perfect flight conditions… (Lugano, Switzerland)

... not so perfect flight conditions, but that is when UAS are most needed!
We need Test Environments in order to Assess UAS & UAM Performance

R&D
Testing
Rating and Certification

Day and night operations

Flying through cities
High altitude
Windy day
Adverse weather
Extreme temperatures
Specific winds

-°C +°C
Classical Climatic Facilities
Large Fans, Simple Flows

25’000 ft altitude
Winds up to 100 ft/s
Temperatures from –40°F to 140°F
In 2016, we developed* the concept of a Wind & Weather Facility in order to develop 21st century drones in Controllable and Repeatable Atmospheric Conditions

- No walls
- Small footprint
- Wind Shear
- Gusts
- Weather (rain, hail, dust, snow...)
- Actual drone
- Free-flying
- No support
- Emulated GPS

UAV & UAM are more like birds than aircrafts: they are small, fly unsteadily, and are subject to gusts and wind shears.
WindShape Technology

Wind Pixels and **Wind Blocks**

Each wind pixel (fan) is individually controlled
WindShape Technology

Wind Blocks = Lego Blocks

Wind Blocks can be setup in any arbitrary geometry
WindShape Technology

Fine-Tuning and Reproducibility of Arbitrary Atmospheric Flows

Veisman, Dougherty, Gharib 2016
WindShape Technology

Gusts & Shear

Drone attitude
- Pos x: 0.063 [m]
- Pos y: 1.201 [m]
- Pos z: 0.663 [m]
- Yaw: 178.022
- Pitch: 2.362 [°]
- Roll: 358.637

Average speed
- m/s: 2.3
- km/h: 8.4
- mph: 5.2
In 2017, WindShape delivered its first product to Caltech and NASA Jet Propulsion Laboratory Center for Autonomous Systems and Technologies (cast.caltech.edu)
Testing & Rating

Drone stays in place for optimal visual inspection & testing

Descent Stability

Stability in Arbitrary Winds

Flight in Windy Days

Stability in Urban Canyon Flows

Stability in Unpredictable Flows
Testing & Certification

Collaboration with
the Institute for Snow & Avalanche Research WSL – SLF
(Davos, Switzerland)
Next Steps

Characterize Actual UAS/UAM-Scale Meteorological Flows

«Teach» a WindShape Machine to Reproduce Meteorological Flows of Relevance to UAS/UAM Safety
Many Thanks from the WindShape Team!

www.windshape.ch / guillaume.catry@windshape.ch