

Creating Test Environments for Assessing UAS Performance

Flavio NOCA
Professor of Aerodynamics

Guillaume CATRY

CEO

Perfect flight conditions... (Lugano, Switzerland)

... not so perfect flight conditions, but that is when UAS are most needed!

We need Test Environments in order to Assess UAS & UAM Performance

h e p i a

Haute école du paysage, d'ingénierie et d'architecture de Genève

Classical Climatic Facilities Large Fans, Simple Flows

UAV & UAM are more like birds than aircrafts: they are small, fly unsteadily, and are subject to gusts and wind shears

In 2016, we developed* the concept of
a Wind & Weather Facility
in order to develop 21st century drones
in Controllable and Repeatable Atmospheric Conditions

✓ Emulated GPS

- ✓ Actual drone
- ✓ Free-flying
- ✓ No support

- ✓ No walls
- ✓ Small footprint
- ✓ Wind Shear
- **✓** Gusts
- ✓ Weather (rain, hail, dust, snow...)

^{*} Noca F. & Catry G. Wind Generation Means and Wind Test Facility Comprising the Same. *Patent Pending PCT/EP2017/064451*

Wind Pixels and Wind Blocks

Each wind pixel (fan) is individually controlled

Wind Blocks = Lego Blocks

Wind Blocks can be setup in any arbitrary geometry

Fine-Tuning and Reproducibility of Arbitrary Atmospheric Flows

Veisman, Dougherty, Gharib 2016

WindShape Technology Gusts & Shear

In 2017, WindShape delivered its first product to Caltech and NASA Jet Propulsion Laboratory Center for Autonomous Systems and Technologies (cast.caltech.edu)

Caltech

Testing & Rating

Drone stays in place for optimal visual inspection & testing

Stability in Arbitrary Winds

Stability in Urban Canyon Flows

Descent Stability

Flight in Windy Days

Stability in Unpredictable Flows

guillaume.catry@windshape.ch / http://www.windshape.c

flavio noca@hesge ch / http://chachacha.ch

Haute école du paysage, d'ingénierie et d'architecture de Genève

Haute École Spécialisée de Suisse occidentale

Testing & Certification

An improved machine to produce nature-identical snow in the laboratory

Stefan SCHLEEF, Matthias JAGGI, Henning LÖWE, Martin SCHNEEBELI

WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
E-mail: schneebell@slf.ch

Collaboration with the Institute for Snow & Avalanche Research WSL – SLF (Davos, Switzerland)

Characterize Actual UAS/UAM-Scale Meteorological Flows

BUBBLE – an Urban Boundary Layer Meteorology Project

M. W. Rotach^{1,12}, R. Vogt², C. Bernhofer³, E. Batchvarova^{4,7}, A. Christen², A. Clappier⁵, B. Feddersen⁶, S.-E. Gryning⁷, G. Martucci⁹, H. Mayer⁸, V. Mitev⁹, T. R. Oke¹⁰, E. Parlow², H. Richner¹, M. Roth¹¹, Y.-A. Roulet⁵, D. Ruffieux¹², J. A. Salmond¹³, M. Schatzmann⁶, and J. A. Voogt¹⁴

«Teach» a WindShape Machine to Reproduce Meteorological Flows of Relevance to UAS/UAM Safety

Many Thanks from the WindShape Team!

www.windshape.ch / guillaume.catry@windshape.ch

Guillaume CATRY CEO Co-founder Co-inventor

Aerospace Engineer MSc, EPFL, 2015

Dr. Flavio NOCAStrategic & Tech. Advisor
Co-founder
Co-inventor

Aeronautics PhD, Caltech, 1997

Albéric GROS Marketing & Sales Co-founder

Engineering MSc, HES-SO, 2019

Luca J. BARDAZZI Production & Rating Co-founder

Engineering MSc, HES-SO, 2018

Sergio MARQUEZ Engineering & Admin Co-founder

Engineering MSc, HES-SO, 2016

Nicolas BOSSON R&D and Testing

Propulsion Engineer
MSc, Soton*, 2017
*Southampton university