NESDIS Enterprise Cloud Products, CLAVR-x, and Future Development

Clouds, Cloud Ceiling, and Visibility (C&V) Technical Exchange Meeting July 13th, 2022 (Virtual) Andrew Heidinger and Mark Kulie, NOAA/NESDIS Mike Foster, Coda Phillips, Tom Rink, Steve Wanzong, University of Wisconsin, CIMSS

andrew.heidinger@noaa.gov mike.foster@ssec.wisc.edu

Goals of this Talk

- Give an overview of the NOAA/NESDIS Enterprise Cloud Products with a focus on the cloud mask
- Show some examples
- Discuss some current development of CLAVR-x derived aviation products

Some Terminology

CLAVR-x - Clouds from AVHRR Extended - The NESDIS operational cloud product processing system for AVHRR and GOES until replaced by the STAR Algorithm Processing Framework (**SAPF**). CLAVR-x continues to be the development system for the NESDIS Cloud Team and provided to **CSPP**. CLAVR-x supports most sensors.

Enterprise Cloud Products - a NESDIS name for the cloud algorithms developed in CLAVR-x and run operationally on VIIRS and GOES-R at NESDIS (transition underway).

PATMOS-x - our reprocessing efforts where we run CLAVR-x over the AVHRR and GOES-I-P records (will be extended to VIIRS and GOES-R). It is an operational CDR at NESDIS (NCEI).

The Enterprise Cloud Mask (ECM)

- ECM is part of the Enterprise L2 software package used by NESDIS.
- Supports GOES-R/ABI, JPSS/VIIRS, HIMAWARI/AHI, MSG/SEVIRI and others
- Trained on the cloud phase product from the NASA CALIPSO/CALIOP Cloud Layer products.
- Fundamental output is probability of a pixel being clear, water cloud or ice cloud.
- Makes a 4-Level mask similar to the NASA MODIS mask
- Makes a cloud phase a cloud type product.

Current approach in operations is Naive Bayesian approach used 1D, 2D, and 3D classifiers optimized for surface type.

New ML/AI methods are being developed at CIMSS and CIRA.

Example 2D Classifier for Clear, Water and Ice

ECM Qualitative Products (Mask and Type)

- ECM provides probabilities of 0.0 -1.0 for clear, water or ice cloud.
- ECM makes a phase uncertainty from 0 50%
- These can be used for quantitative glaciation estimates and supercooled water presence (coupled with ACHA Tc).

Use of Enterprise Cloud Properties

Current CIMSS near-real-time processing

- CLAVR-x and the experimental Enterprise Cloud Products.
- ¹/₂ hourly Himawari-8 AHI full disk.
- Hourly GOES-16 ABI full disk.
- Hourly GOES-17 ABI full disk.
- ftp://<u>ftp.ssec.wisc.edu/pub/clavrx/real_time/level2/</u>
- Current work is progressing on making AWIPS2 compatible files.

Examples of Enterprise Cloud Products Over Alaska

NOAA-20 VIIRS July

False Color Image Red=1.38 μ m, Green = 0.65 μ m, Blue = 1.60 μ m

True Color Image Red=0.65 μ m, Green = 0.55 μ m, Blue = 0.48 μ m

Cloud Probability: 0.0 = Clear, 1.0 = Cloudy

False Color Image Red=1.38 μ m, Green = 0.65 μ m, Blue = 1.60 μ m

Cloud Mask : 4-Level Mask - just like MODIS but based on Cloud Prob.

False Color Image Red=1.38 μ m, Green = 0.65 μ m, Blue = 1.60 μ m

JUUULIIUSK	cl	lo	ud		m	a	sł	<
------------	----	----	----	--	---	---	----	---

Clear Water	Clear Land	Prob. Clear	Prob. Cloudy	Cloudy	Unknown

Cloud Type : Not standard Met Types, Thick/Thin + Ice/Water + Sc

False Color Image Red=1.38 μ m, Green = 0.65 μ m, Blue = 1.60 μ m

Cloud Type

Clear	Prob. Clear	Near Sfc.	Water	Super Cooled
Opaque Ice	Cirrus	Overlap	DCC	Unknown

Cloud Top Pressure

Cloud—top Pressure (hPa)

missing	1100	950	900	850	800	700	600
500	450	400	350	300	250	200	150

False Color Image Red=1.38 μ m, Green = 0.65 μ m, Blue = 1.60 μ m

Cloud Optical Depth: A measure of cloud thickness

False Color Image Red=1.38 μ m, Green = 0.65 μ m, Blue = 1.60 μ m

Current/Future CLAVR-x Development

 Recent product development has shifted to using core CLAVR-x cloud products as input to ML/AI models

CLAVR-x Level 2 products				
Trained ML/AI Model				
Derived Products				

MASK ACH	A PHASE	DCOMP NLO	COMP BASE	MURI CCL	
Cloud Binary Mask	Aerosol Optical Thickness MURI	Rain, probability Item VIS/BIR	Surface Temperature	Fire mask	
Cloud Top Height	Aerosol Fine Mode MURI	Bain rate from AIS/NIR	Cloud Base Temperature	Smoke mask	
Cloud Top Pressure	Aerosol Coarse Mode MURI	Bain tate NHRS/ATMS	Cloud Base Pressure	Cloud Shadow Mask	
Cloud Top Temperature	Aerosol Fine/Coarse Mode Ratio MURI	Convection cloud probability	Cloud Base Height	NDVI	
Cloud Phase	Solar insolation	Super-cooled Cloud Probability	Outgoing Longwave Radiance	Glint Zenith Angle	
Cloud Optical Thickness	Solar insolation diffuse	Cloud Phase IR	Inversion Flag	Glint Mask	
Cloud Effective Radius 1.	i Cloud Transmission	Cloud Type IR	Visible Reflectance from Lunar Irradiance	Cloud Shadow	
Cloud Effective Radius 2.	Cloud Albedo	Cloud Height H2O	Cloud Temperature Opaque	Cloud Optical Thickness IR cirrus	
Cloud Effective Radius 3.	Cloud Spherical Albedo	Cloud Height Opaque	Cloud Top Emissivity	Cloud Effective Radius IR cirrus	
Nighttime Cloud Optical Thickness	Cloud Fraction	Cloud Layer	Cloud Top Beta	Cloud Droplet Number Concentration	
Nighttime Cloud Effectiv Radius	Cloud Fraction High	Aerosol Optical Thickness AVHRR	Cloud Height Sounder	Cloud Geometrical Thickness	
Cloud Probability	Cloud Fraction Middle	Cloud Fraction Low	Cloud Temperature Second Layer	Cloud Water Path	

Daytime/Nighttime Aircraft Icing Predictor

Data Engineering:

- Training data: ABI channels and CLAVR-x cloud products. CONUS, 2018-01-01 to 2020-01-01, 2km, 10min resolution. Approximately 70,000 samples.
- Truth data: Quality controlled PIREP data obtained from the lowa Mesonet archive.

Features:

- Generates cloud icing probability for five discrete flight levels
- Prediction for day, night, or mixed scenes with default 'AUTO' mode
- Implemented as a Fully Convolutional Network (FCN)
- Support for GOES-16, GOES-17, Suomi NPP, NOAA-20, Himawari-08/09

Current development:

- Support for arbitrary sized input array
- Support for Lunar cloud optical properties (NLCOMP)

Near Surface Visibility

Training data:

6 months of Himawari-8 data matched with quality-controlled surface station visibility measurements

Input parameters:

- Himawari-8 imager channels
- CLAVR-x cloud products
- Aerosol Optical Depth (AOD)
- Relative Humidity (RH)
- Rain Mask

Output parameters:

- Probability of visibility above or below a given threshold (currently 8km)
- Visibility estimate (km)
- Information on most important input variable

Visibility Product 2019-05-07 00:00

- Map of probability that visibility is greater than 8 km
 - Blue = high probability
 - Red = low probability
- Dots represent surface station ٠ measurements
 - Green = high visibility
 - Red = low visibility

Conclusions

- NESDIS Enterprise Cloud Products are available from ABI and VIIRS and made by NESDIS operationally and other sources including GINA.
- CLAVR-x is the development system for these products and supports the generation of an expanded set of cloud products from many different satellites/sensors
- Algorithms are evolving with AI and we are always looking for opportunities to optimize them for applications and engage with users.

Backup slides

What does CLAVR-x provide

<u>All Underlined product algorithms are adopted as NOAA's operational</u> <u>algorithm for VIIRS on SNPP/NOAA and ABI on GOES-16/17</u>

- <u>Cloud Mask</u>: A Naive Bayesian approach.
- Cloud Type/Phase: Based on spectral tests.
- <u>Cloud Top Temperature/Height/Pressure (ACHA)</u>: An optimal estimation based approach.
- <u>Daytime Cloud Optical and Microphysical Properties (DCOMP)</u>: An optimal estimation based approach.
- Nighttime Lunar Cloud Optical and Microphysical Properties (NLCOMP): Utilize lunar reflectance and a lunar reflectance model.
- <u>Cloud Base Height</u>: A statistically based approach.
- <u>Cloud Cover Layer (CCL)</u>: Compute cloud fraction at various flight levels and resolution using cloud mask and ACHA products.
- And many more ...