UAS-Based Inspection of Infrastructure

Chris Theisen
Northern Plains UAS Test Site
University of North Dakota
NP UAS TS Background

www.npuasts.com

• One of 7 FAA Selected UAS Test Site

• Mission

“Collaborate with FAA and industry partners to develop equipment, systems, rules, and procedures to safely integrate unmanned aircraft into the NAS without negatively impacting existing general or commercial aviation.”

• Customized COAs

• Services
 • Flight Operations
 • Flight Oversight
 • Training
 • Consulting
 • Credentialing/Certification
Infrastructure UAS Ops

Application Types
- Linear Infrastructure Inspections
 - Railway, powerlines, pipelines, roadways, etc.
- Point Infrastructure Inspections
 - Wind turbines, towers, building construction, etc.

Operational Considerations
- Rural vs Urban
- Distance from Structures
 - Horizontal and Vertical
- Environmental Conditions
 - Equipment and flight crew
 - Infrastructure
Linear Infrastructure Inspection

- Usually operated at altitudes above or adjacent to the infrastructure
- Increased UAS endurance requirements

- Pulse Vapor 55
 - Rotary wing
 - Small UAS (<55 lbs)
 - Daisy-Chained Visual Observers

- Elbit Hermes 450
 - ~1000 lbs
 - Chase Plane Visual Observer
Point Infrastructure Inspection

• Usually operated in and around the structures
• Requires stability and precision

• UND Powerline Inspection Research
 • Collaborate with regional utility industry partners
 • Conduct sensor trade study for component inspections
 • Assess performance for close-up inspections (2016)
 • Demonstrate beyond visual line of sight surveys (2017)

• Flights to date
 • Freefly Alta 8
 • Rotary wing
 • Top-mounted sensor
 • Visual Line of Sight Operations
 • Flown within 10’-15’ of structure, ~ 200’ tall, in winds up to 20 kts

* See poster presentation Wednesday, Booth 1635
Point Infrastructure Inspection

• Building Construction
 • Variety of sUAS (<55 lbs)
 • Rotary wing
 • Operated 20-25 ft from building
 • Reduced wind limits by ½

• Roof Inspection (Insurance)
 • Rotary wing
 • Small UAS (<55 lbs)
 • Operated 10-20 ft above roof
Pre-Flight Planning

• Evaluate operational environment
 • Urban vs Rural
 • Low Altitude vs High Altitude

• Monitor weather conditions to identify flight dates
 • Use standard online tools (~4-7 days in advance)

• Confirm flight conditions day prior
 • Ceilings, precipitation, wind, temperature

• Confirm UAS can operate in forecasted weather conditions
 • Onsite/nearest weather station conditions and pilot judgement determine go/no-go each flight
Weather Effects on UAS Infrastructure Ops

- Larger UAS – Plan for weather similar to manned aircraft
- Small UAS – Greater impact from weather
 - Wind eddies and microclimates in and around structures
 - UAS autopilot capability and excess power critical for stable flight in higher winds
- Adjust weather minimums
 - BVLOS flights
 - Flight close to structures
- Supporting equipment subjected to environmental conditions
 - Tablet/phones turn off during extreme weather
 - DAA/obstacle avoidance systems impacted by weather conditions
- Flight crew subjected to environmental conditions
Questions?