

Micro-Weather for Drone Operations

Design Overview 30 April 2018

Presented by Wilson Hughes, Mahdi Ghanei, and Hamzh Albar

Other team members include Hanwen Zhao, Joe Parnell and Alex Lubar

Project Mission

Mission: To facilitate drone commercialization, create a UAV-based, automated, micro-weather data collection and flight optimization system to improve safety and reliability of drone flight.

Today, we will focus on:

- Automatically calculating wind speed from a drone.
- Incorporating data from the HRRR forecast model.
- Taking wind speed data and generating an efficient flight path.

Data Mapping and Optimization

Data Mapping and Grid Creation

- Starts with the HRRR forecast model, provided at 3 km resolution and 15 min updates.
 - Download wind speed at 10 m level
 - The most important variable for drones.
- Bilinear interpolation is used to increase resolution to 0.75 km.
- Process creates placeholders for future wind speed updates:
 - Secondary flight optimization
 - Forecast models

$$f(x,y)pprox rac{y_2-y}{y_2-y_1}f(x,y_1) + rac{y-y_1}{y_2-y_1}f(x,y_2)$$

Route Discretization

Possible waypoints are created at the interpolated points.

- This allows for first flight path to be generated.
- Saves locations where wind speed information is updated.

Preliminary Flight Optimization

- Done before drone flight.
- Using only HRRR model data to create a map.
- Diverts around no-fly zones (weather or FAA) and avoiding yellow zones.
- Optimized route travels along discretized waypoints.

Dijkstra's Algorithm

- A common method for finding the optimal path between two points.
- The weight for each route is calculated based on:
 - Total distance
 - Average wind speed
- Weighting the variables above also optimizes for the secondary variables such as time and battery life.

Numbers in circles represent wind speeds, in m/s.

Weighted Distance Comparison

Original Path: 4.9 + 5.9 = **10.8** Optimal Path: 3+2.9+2.5 = **8.4**

Secondary Flight Optimization

- Update the wind speed map.
 (0.75 km * 0.75 km) using data from the previous drones
- Find the optimal path using the updated map

Velocity Calculation

Indirect Wind Speed Measurement

- Calculate the tilt angle (γ)
 using pitch (ϑ) and roll (∅)
 angles from the gyroscope
 and accelerometer sensor.
- Calculate the total wind speed as a function of:

 ρ – Air density $D(\gamma)$ – Drag force C_D – Drag coefficient $A(\gamma)$ – Cross-sectional area

$$A(\gamma) = \left[Area_{Front} * |Cos(WindDirection)| * |Cos(\gamma)| \right]$$
$$+ \left[Area_{Side} * |Sin(\gamma)| \right] + \left[4 * (0.157)^{2} * \pi * Sin(\gamma) \right]$$

$$\gamma = cos^{-1} \left(\frac{\vec{n}_{xy} \cdot (\vec{e}_{\emptyset} \times \vec{e}_{\theta})}{|\vec{n}_{xy}| \cdot |\vec{e}_{\emptyset} \times \vec{e}_{\theta}|} \right)$$

$$D_{simple} = mgtan(\gamma)$$

$$v = \sqrt{\frac{2 * D(\gamma)}{\rho * A(\gamma) * C_D}}$$

Moyano Cano, Javier, et al. "Quadrotor UAV for wind profile characterization." University of Madrid, 2013.

Test Method

- Measure and calculate wind speed at the same time, height, and general area.
- 60-second trials.

Testing Results

Figure 1: Comparison between calculated and measured wind speed for test 5.

Figure 2: Comparison between calculated and measured wind speed for all tests.

Source of Errors

- Didn't account for wind direction in the first 4 tests.
- The drone takes time to return to equilibrium after a wind disturbance.
- Using one microcontroller with multiple chips slows the transition of the gyroscope data.
- Cross-sectional area formula.

Test 5 Results

Tria	Mean	Maximum	Minimum	Mean	Relati	Error
1	calculated	calculated wins	calculated	Measured	ve	(%)
	wind speed (speed (m/s)	wins speed (wind speed	Error	
	m/s)		m/s)	(m/s)		
1	6.25	6.86	5.72	4.11	0.52	52%
2	4.37	4.80	4.03	2.76	0.58	58%
3	5.49	6.21	4.52	5.20	0.05	5%
4	1.34	2.82	1.73	1.66	0.18	18%
5	5.84	6.07	5.67	4.71	0.24	24%
6	5.03	5.50	4.30	3.39	0.48	48%
7	6.90	7.21	6.58	5.57	0.23	23%
8	3.88	4.59	3.43	2.69	0.44	44%
9	6.38	6.58	5.85	6.91	0.07	7%
10	6.40	6.86	5.00	6.00	0.06	6%

Future Improvements

Next steps:

- More sophisticated velocity calculation.
- Altitude analysis.
- Quicker data transmission.

Questions?

