W-UCP - an Open-source Tool for deriving Urban Canopy Parameters for the Pearl River Delta region & Examples of its application

Michael M.F. Wong*, Jason Ching, Jimmy C.H. Fung*, Jimmy W.M. Chan* *Hong Kong University of Science and Technology

UCP = Urban Canopy Parameters

OUTLINE

- 1. Introduction
- 2. Methodology
- 3. Examples of application
- 4. Guidance on WRF's application
- 5. Discussion

WUDAPT OVERVIEW AND WRF MODELING A TOOL FOR THE COMMUNITY TO PROCESS DATA FOR WRF MODELING

22.35

114.3

114 1

114 2

We're getting closer to WUDAPT L12, e.g., the DSC (Dan Aliaga et al. 2022)

WUDAPT PORTAL

W2W UCP TOOL DEMUZERE ET AL. 2022 FOR LEVEL-0 DATASET

Home Data v Tools v Materials v				
World Urban Database World Urban Database and Access Portal Tools	Home	Data 🗸	Tools ¥	Materials 🗸
WUDAPT TO WRF				
From WRF v4.3.x onward, Local Climate Zone land use classes can be read by default. See her	e for more inf	ō.		
Python W2W (new version)				
In order to 1) improve, and simplify the previous Fortran-based WUDAPT-to-WRF procedure (below), and 2) align this procedure more with the LCZ maps generated by the LCZ Generator, a new python- based WUDAPT-to-WRF tool has been developed.				
This open-source tool is packaged and available via PyPi: https://pypi.org/project/w2w/.				
This software is open-access, and its documentation is published as:				
Demuzere, M., Argüeso, D., Zonato, A., Kittner, J. (2022). W2W: A Python package that injects WUDAPT's Local Climate Zone information in WRF. Journal of Open Source Software; 7(76), DOI: 10.21105/joss.04432.				
In case of questions or issues, please submit a new issue on the w2w Github page .				
Fortran W2W (old version)				
A guide is available if you are interested in using WUDAPT with WRF. The guide has been prepared by Alberto Martilli, Oscar Brousse and Jaso	n Ching.			
You can download the guide from here. This guide is related to WRF version 3.2. The code for WUDAPT to WRF (W2W) ist available here.				
For complementary information or questions please contact alberto.martilli@ciemat.es or o.brousse@ucl.ac.uk.				

TOOLS DEVELOPMENT OVERVIEW A TOOL FOR THE COMMUNITY TO PROCESS DATA FOR WRF MODELING

We're getting closer to WUDAPT L12, e.g., the DSC (Aliaga et al. 2022)

TOOLS DEVELOPMENT OVERVIEW A TOOL FOR THE COMMUNITY TO PROCESS DATA FOR WRF MODELING

WUDAPT L1-L2

- Python based script (open-source)
- QGIS (open-source and GUI)
- User friendly for visualization of the data and statistics
- Under WUDAPT/NCAR/Github (facilitate communication for further development)
- Writing to WRF WPS tiles

Gridded UCP values

WPS tiles

METHODOLOGY

INPUT DATA

- Building data in shape file format (e.g., own building data or DSC output)
- WUDAPT level-0 dataset
- Sentinel Satellite
 Vegetation output
- Google Satellite images/ OSM etc. (for visualization)

TOOLS

• Python and QGIS

OUTPUTs e.g., WRF BEP/BEM

 $\boldsymbol{A_h} = \frac{\sum_i A_i \times H_i}{\sum_i A_i}$

URBAN CANOPY PARAMETERS ARE IMPORTANT TO RUN THE MULTI-LAYER BEP MODEL

RUNNING THE URBAN MODULE (BEP) REQUIRES REAL BUILDING DATA

WORKFLOW

We automate and document this process, with PYTHON scripts & QGIS functions for end user.

LIST OF UCPS CAPABILITY SO FAR PREDOMINANTLY FOR WRF-BEP

- Building Height
- Plan area ratio
- Building surface to plan area ratio
- Standard deviation of building height 222
- Urban Fraction
- Building Height Distribution

114

Janual a Deviation

7.5

114.5

9.5

8.5 9

8

113

2.65

2.55

2.5

2.45

5 5

113.5

0.25

0.05

12.8 113 113.2 113.4 113.6 113.8 114 114.2 114.4 114.6 114.8

APPLICATION EXAMPLES

1. WRF BEP/BEM simulation

- 2. Apply to other regions
- 3. UCPs at different resolutions
- 4. Update one's look-up table
- 5. Other schemes
- 6. Studies with Satellite images/ surface stations

OTHER REGIONS (E.G., CHICAGO)

APPLICATION 2

e.g., plan area ratio and area weighted building height

15

Difference (GT-Recon)

 $\times 10^{6}$

4.66

4.65

4.64

4.63

4.62

4.3

4.4

4.5

4.6

4.7

 $\times 10^5$

COMPUTING DIFFERENT VERSIONS OF UCPS FOR WRF BEP BEM (VERTICAL AND HORIZONTAL)

APPLICATION 3

REAL AGL(m) 5m bin: 8.6359

REAL AGL(m) DIff: 8.6359

REAL AGL(m) 10m bin: 8.6359

UCP TOOL

WRF wind field over Hong Kong for different bin sizes

COMPUTING DIFFERENT VERSIONS OF UCPS FOR WRF BEP BEM (VERTICAL AND HORIZONTAL) APPLICATION 4

After the calculations, we obtain the UCP values from DSC for every grid

OWN LOOK UP TABLE

APPLICATION 4

OWN LOOK UP TABLE

APPLICATION 4

The WUDAPT level-0 data is promising in identifying the urban area in Hong Kong when compared to Google Satellite image

COMPARISON: LOOKUP TABLE VS. MEDIAN (HK BUILDING DATA & WUDAPT LEVEL-0) APPLICATION 4

- Look up table has a higher plan area fraction than the median in Hong Kong (possible reason: WUDAPT level-0 identified region with not many building to LCZs 1-6).
- Area weighted building height match well with the look up table (Hong Kong buildings should be taller)

EXTENSION TO OTHER VARIABLES APPLICATION 5

Macdonald's Method, and Kanda's Method

$$z_{0_{Kanda}} = (a_1 + b_1 \left(\frac{\lambda_p \sigma_H}{H_{ave}}\right)^2 + c_1 \left(\frac{\lambda_p \sigma_H}{H_{ave}}\right) H_{ave} A^{-\lambda_p} (1 - \lambda_p) \exp\left[-\left\{0.5\beta \frac{C_{1b}}{k^2} A^{-\lambda_p} (1 - \lambda_p)\lambda_f\right\}^{-0.5}\right]$$

$$z_{0_Mac} = H_{ave} A^{-\lambda_p} (1-\lambda_p) exp[-\left\{0.5\beta \frac{c_{1b}}{k^2} A^{-\lambda_p} (1-\lambda_p) \lambda_f\right\}^{-0.5}]$$

where

 $(a_1, b_1, c_1, C_{1b}, k, A, \beta) = (1.29, 0.36, -0.17, 20.21, -0.77, 1.2, 0.4, 4.43, 1.0)$

Macdonald et al. 1998

Kanda et al., 2013

EXTENSION TO OTHER VARIABLES APPLICATION 5

STUDIES WITH SATELLITE IMAGES/ SURFACE STATIONS APPLICATION 6

UCP TOOL

STUDIES WITH SATELLITE IMAGES/ SURFACE STATIONS APPLICATION 6

Very high-resolution land use (10m)

Observation Network 717 stations

STUDIES WITH SATELLITE IMAGES/ SURFACE STATIONS

Over the whole month, the observed average wind speed in PRD decreases with the increase in urban fraction.

APPLICATION EXAMPLES

1. WRF BEP/BEM simulation

- 2. Apply to other regions
- 3. UCPs at different resolutions
- 4. Update one's look-up table
- 5. Other schemes
- 6. Studies with Satellite images/ surface stations

Many more.....

GUIDANCE FOR USING URBAN FRACTION DATA

- UCP tool obtains building related parameters and urban fraction data separately
- Inconsistence exists sometimes

GUIDANCE FOR USING URBAN FRACTION DATA

• Zoomed-in view of Shenzhen and Hong Kong, much more heterogenous information than the WUDAPT level-0 look up table

Wong et al. 2019

SUMMARY AND PLAN

SUMMARY

- 1. We build a open source UCP tool for the community
- 2. The tool would be made available soon after publication
- 3. The tool can facilitate a lot of urban related research for different interested parties (as illustrated in the examples)

PLAN

- 1. Extend the tools capability to other variables
- 2. Combine with map's API to get other urban information
- 3. Extend the tool to other models (e.g., MPAS)

THANK YOU!

Michael M.F. Wong

Hong Kong University of Science and Technology

UCP = Urban Canopy Parameters