Scaling and Intensification of Extreme Precipitation in Climate Change Simulations at Kilometer-Scale Resolution

Nikolina Ban¹, Jürg Schmidli² and Christoph Schär¹

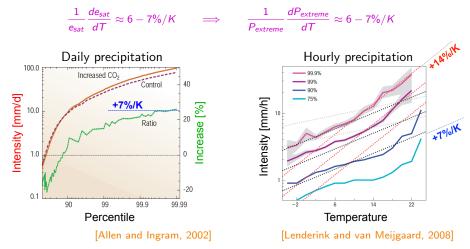
¹Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland ²Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt, Germany

GEWEX CPCM Workshop Sep 6-8, 2016

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

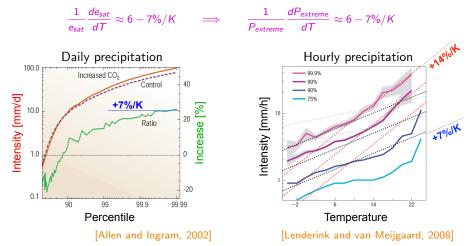

Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

$$\frac{1}{e_{sat}}\frac{de_{sat}}{dT}\approx 6-7\%/{\cal K} \qquad \Longrightarrow \qquad \frac{1}{P_{extreme}}\frac{dP_{extreme}}{dT}\approx 6-7\%/{\cal K}$$

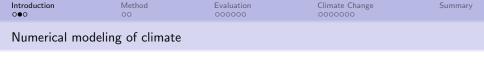

Introduction	Method	Evaluation	Climate Change	Summary
●00	00	000000	0000000	

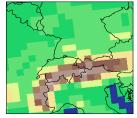

Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

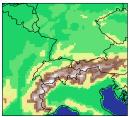
 $rac{1}{e_{sat}}rac{de_{sat}}{dT}pprox 6-7\%/K$ $-\frac{dP_{extreme}}{c} \approx 6 - 7\%/K$ $\frac{1}{P_{extreme}} \frac{dP}{dP}$ Daily precipitation 100.0 Increased CO-Control 40 Intensity [mm/d] +7%/K 10.0 ncrease [% 20 Ratio 1.0 -20 0.1 90 99 999 99.99 Percentile

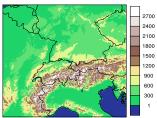


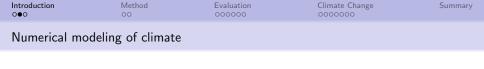
Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

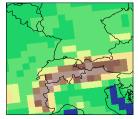


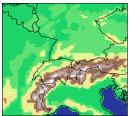

Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

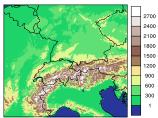

• Do heavy hourly precipitation events increase at adiabatic (${\sim}6\text{--}7\,\%/K$) or super-adiabatic (${\sim}14\,\%/K$) rate?




Regional climate model 12 km


Convection-resolving model 2 km


 CRM: Convection-resolving model enables explicit simulation of convection (e.g., thunderstorms, rain showers)



Regional climate model 12 km

Convection-resolving model 2 km

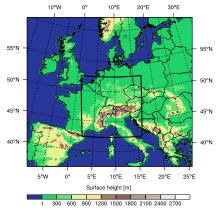
- CRM: Convection-resolving model enables explicit simulation of convection (e.g., thunderstorms, rain showers)
- CRM studies: Grell et al., 2000; Mass et al., 2002; Hohenegger et al., 2008; Knote et al., 2010; Kendon et al., 2012, 2014; Langhans et al., 2013; Prein et al., 2013; Rasmussen et al., 2011, 2014; Ban et al., 2014, 2015; Prein et al., 2015 (Rev. of Geophysics), Kendon et al., 2016 (BAMS), Leutwyler et al., 2016

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	
Outline				

- Does CRM improve representation of precipitation distribution and statistics?
- How do precipitation extremes scale with temperature? With Clausius-Clapeyron relation?

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	
Outline				

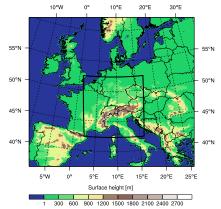
- Does CRM improve representation of precipitation distribution and statistics?
- How do precipitation extremes scale with temperature? With Clausius-Clapeyron relation?


Climate Change

- Difference between CRM and conventional climate models?
- Link between temperature change & precipitation change?

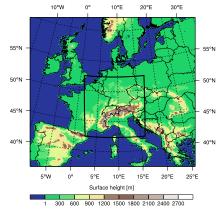
Introduction	Method	Evaluation	Climate Change	Summary
000	●○	000000	0000000	
Setup				

Two-step one-way nesting: $BC \Rightarrow CPM12 \Rightarrow CRM2$

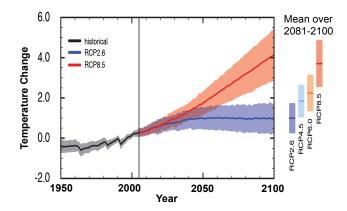

- CPM12 and CRM2 use COSMO-CLM v4.14
- Boundary Conditions: ERA-Interim reanalysis & MPI-ESM-LR (RCP8.5)
- CPM12: Convection–Parameterizing Model
 - △x,y=12 km (0.11°)
 - XxYxZ=260x228x60
- CRM2: Convection–Resolving Model
 - △x,y=2.2 km (0.02°)
 - XxYxZ=500x500x60

Introduction	Method	Evaluation	Climate Change	Summary
000	●○	000000	0000000	
Setup				

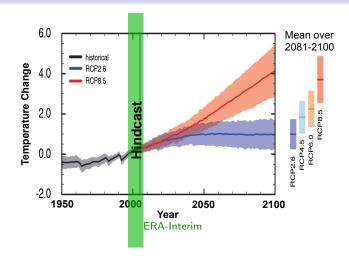
Two-step one-way nesting: $BC \Rightarrow CPM12 \Rightarrow CRM2$


- CPM12 and CRM2 use COSMO-CLM v4.14
- Boundary Conditions: ERA-Interim reanalysis & MPI-ESM-LR (RCP8.5)
- CPM12: Convection–Parameterizing Model
 - △x,y=12 km (0.11°)
 - XxYxZ=260x228x60
 - Parametrization of convection: Tiedtke
- CRM2: Convection–Resolving Model
 - △x,y=2.2 km (0.02°)
 - XxYxZ=500x500x60
 - Deep convection explicitly resolved
 - Shallow convection: Tiedtke

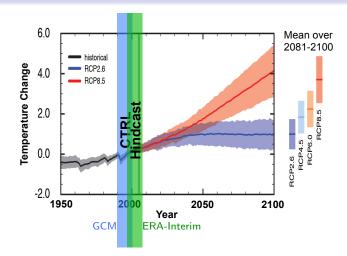
Introduction	Method	Evaluation	Climate Change	Summary
000	●○	000000	0000000	
Setup				

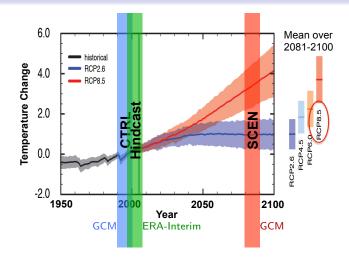

Two-step one-way nesting: $BC \Rightarrow CPM12 \Rightarrow CRM2$

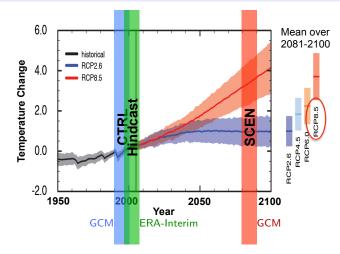
- CPM12 and CRM2 use COSMO-CLM v4.14
- Boundary Conditions: ERA-Interim reanalysis & MPI-ESM-LR (RCP8.5)
- CPM12: Convection–Parameterizing Model
 - △x,y=12 km (0.11°)
 - XxYxZ=260x228x60
 - Parametrization of convection: Tiedtke
- CRM2: Convection–Resolving Model
 - △x,y=2.2 km (0.02°)
 - XxYxZ=500x500x60
 - Deep convection explicitly resolved
 - Shallow convection: Tiedtke



The numerical simulations have been performed on the CRAY XT5 and CRAY XE6 at the Swiss National Supercomputing Center (CSCS)


Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

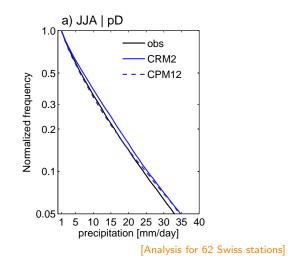

Introduction	Method	Evaluation	Climate Change	Summary
000	0●	000000	0000000	


Introduction	Method	Evaluation	Climate Change	Summary
000	0●	000000	0000000	

Introduction	Method	Evaluation	Climate Change	Summary
000	0●	000000	0000000	

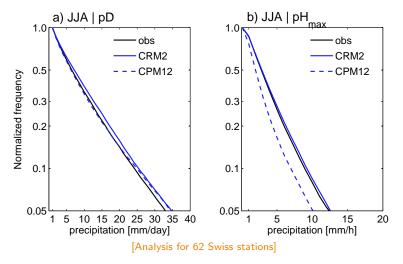
Introduction	Method	Evaluation	Climate Change	Summary
000	0●	000000	0000000	

• Wallclock time: 1×10y CRM2 \rightarrow ≈4-8months


Introduction	Method	Evaluation	Climate Change	Summary
000	00	00000	0000000	

Evaluation of Precipitation in Present-Day Climate

• ERA-Interim driven simulations (1998-2007)


Introduction	Method	Evaluation	Climate Change	Summary
000	00	00000	0000000	

Frequency-Intensity Distribution of Precipitation (JJA)

Introduction	Method	Evaluation	Climate Change	Summary
000	00	00000	0000000	

Frequency-Intensity Distribution of Precipitation (JJA)

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

Evolution of the Hourly Precipitation (July 12-14, 2006)

 $Obs \rightarrow Combined radar and rain gauge observations (Wüest et al., 2010)$ $CRM2 \rightarrow Explicit convection (\triangle x, y=2.2km)$ $CPM12 \rightarrow Parametrized convection (\triangle x, y=12km)$

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

Evaluation of Precipitation – Average across 62 Swiss Stations

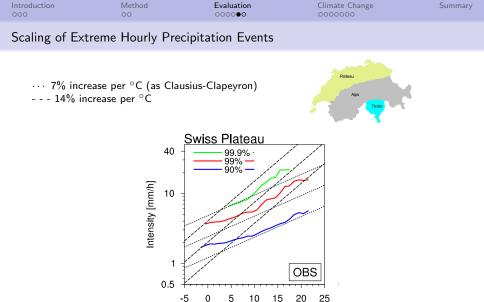
Summer (JJA)					
	mean	freq1d	int1d	freq1h	int1h
Obs	4.11	0.38	10.8	0.12	1.41
CRM2	4.64	0.39	11.28	0.12	1.57
CPM12	4.43	0.41	10.55	0.15	1.21

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

Evaluation of Precipitation - Average across 62 Swiss Stations

Summer (JJA)					
	mean	freq1d	int1d	freq1h	int1h
Obs	4.11	0.38	10.8	0.12	1.41
CRM2	4.64	0.39	11.28	0.12	1.57
bias	13%	3%	4%	-1.5%	11%
CPM12	4.43	0.41	10.55	0.15	1.21
bias	8%	8%	-2%	25%	-14%

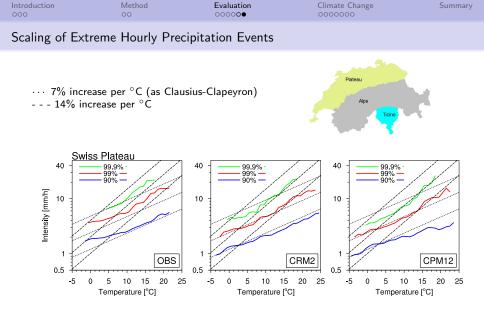
Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	


Evaluation of Precipitation - Average across 62 Swiss Stations

(. . . .

~

Summer (JJA)					
	mean	freq1d	int1d	freq1h	int1h
Obs	4.11	0.38	10.8	0.12	1.41
CRM2	4.64	0.39	11.28	0.12	1.57
bias	13%	3%	4%	-1.5%	11%
CPM12	4.43	0.41	10.55	0.15	1.21
bias	8%	8%	-2%	25%	-14%
Winter (DJF)					
	mean	freq1d	int1d	freq1h	int1h
Obs	2.31	0.28	8.12	0.13	0.73
CRM2	3.19	0.36	8.65	0.18	0.72
bias	38%	29%	6.5%	38%	-1.2%
CPM12	3.3	0.38	8.49	0.2	0.68
bias	43%	36%	4.5%	52%	-7.2%

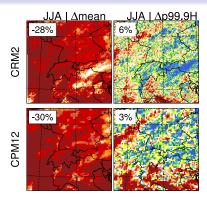

 \rightarrow CRM2 improves the simulation of precipitation in the winter (DJF) and summer (JJA) season

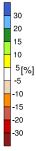
Nikolina Ban : CRM Climate Change Simulations

(Ban et al., 2014 JGR)

Temperature [°C]

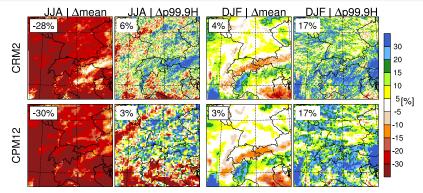
Super-adiabatic scaling is captured by both models


⁽Ban et al., 2014 JGR)


Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	000000	

Projections of precipitation

• based on GCM-driven scenarios for 2081-2090 (RCP8.5) versus 1991-2000



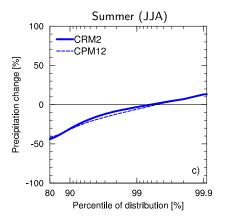
Summer (JJA):

- Increase in heavy precipitation despite an overall drying
- Decrease in large-scale, and increase in convective precipitation (Giorgi et al., 2016, Nature Geoscience)

Introduction 000	Method 00	Evaluation 000000	Climate Change	Summary

Projections of Mean and Heavy Precipitation

Summer (JJA):

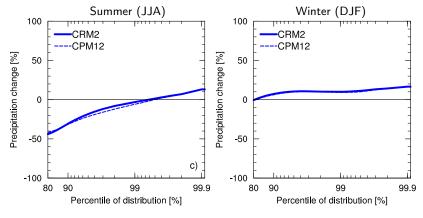

- Increase in heavy precipitation despite an overall drying
- Decrease in large-scale, and increase in convective precipitation (Giorgi et al., 2016, Nature Geoscience)

Winter (DJF):

CRM2 and CPM12 show similar changes

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	000000	

Relative Changes of Precipitation on Daily Timescales

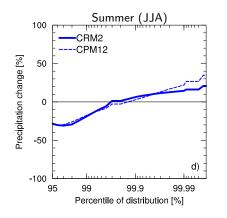


[Average across the CRM2 domain]

Close agreement of CRM2 and CPM12

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	000000	

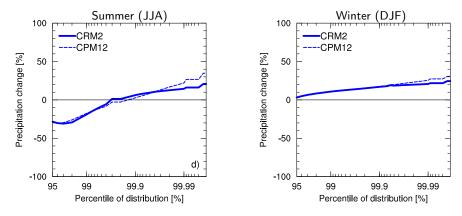
Relative Changes of Precipitation on Daily Timescales



[Average across the CRM2 domain]

Close agreement of CRM2 and CPM12

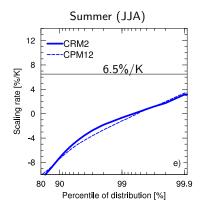
Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	


Relative Changes of Precipitation on Hourly Timescales

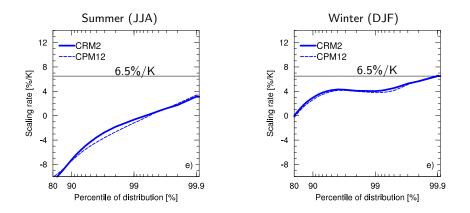
[Average across the CRM2 domain]

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

Relative Changes of Precipitation on Hourly Timescales

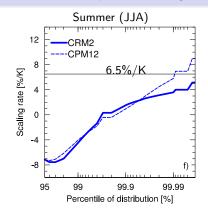


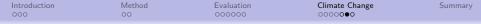
[Average across the CRM2 domain]

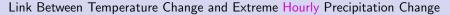

CRM2 exhibits smaller changes than CPM12

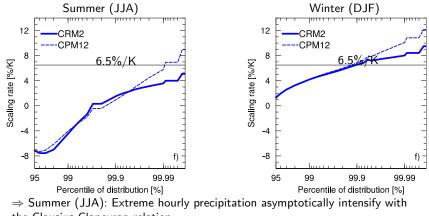
Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

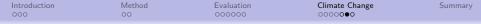


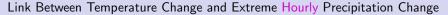

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

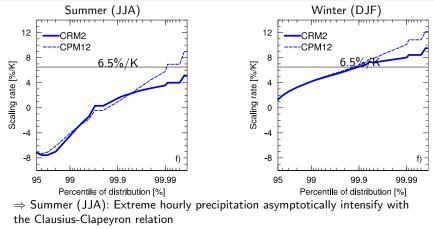


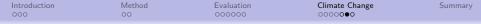

 \Rightarrow Extreme daily precipitation asymptotically intensify with the Clausius-Clapeyron relation

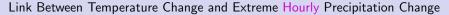
Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	

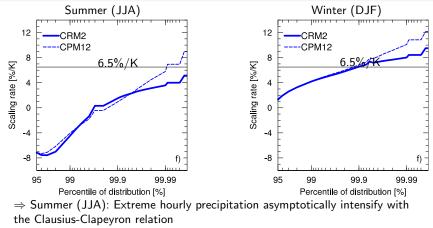




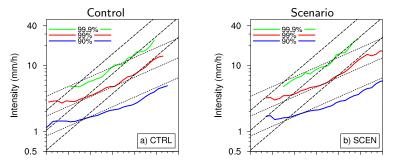



the Clausius-Clapeyron relation





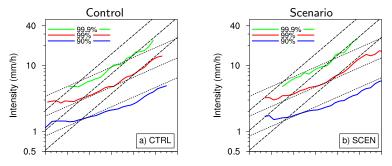
 \Rightarrow Winter (DJF): Changes in extreme hourly precipitation exceeds the Clausius-Clapeyron rate



 \Rightarrow Winter (DJF): Changes in extreme hourly precipitation exceeds the Clausius-Clapeyron rate

Although...

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	000000	



...CRM2 exhibits super-adiabatic scaling for extreme warm-season precipitation, and adiabatic for cold-season precipitation in both Control and Scenario simulations

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	000000	

...CRM2 exhibits super-adiabatic scaling for extreme warm-season precipitation, and adiabatic for cold-season precipitation in both Control and Scenario simulations

 \Rightarrow Indicates that scaling of extreme precipitation with temperature in present-day climate can not be extrapolated into the future

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	
Summary				

- CRM2 improves the simulation of precipitation in all seasons and on all time scales (especially on the sub-daily)
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	
Summary				

- CRM2 improves the simulation of precipitation in all seasons and on all time scales (especially on the sub-daily)
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)

Climate Change

- Close agreement of CRM2 and CPM12 regarding the changes in daily precipitation; for hourly extreme precipitation CRM2 exhibits smaller changes than CPM12
- Changes in extreme summer precipitation qualitatively scale with the Clausius-Clapeyron rate. In winter the change exceeds the Clausius-Clapeyron rate for short-term extreme precipitation

Introduction	Method	Evaluation	Climate Change	Summary
000	00	000000	0000000	
Summary				

- CRM2 improves the simulation of precipitation in all seasons and on all time scales (especially on the sub-daily)
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)

Climate Change

- Close agreement of CRM2 and CPM12 regarding the changes in daily precipitation; for hourly extreme precipitation CRM2 exhibits smaller changes than CPM12
- Changes in extreme summer precipitation qualitatively scale with the Clausius-Clapeyron rate. In winter the change exceeds the Clausius-Clapeyron rate for short-term extreme precipitation

Thank you for your attention!