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% Cloud-scale processes are important for weather and climate
s They can lead to extreme events, e.g. flash floods, gusts, ...
¢ They account for the global mean

“ High-resolution simulations can resolve cloud-scale processes
» Added-value on means and variability, e.g. diurnal cycle, ...

> Realistic representation of scale-interaction across a large
range with various objects contributing to the global mean

% Statistical studies can be made using an object-based approach.
Examples for:

Assessment of cloud forecasts over Brazil using cloud tracking
and its sensitivity to the turbulence parameterization

“» Tracking of deep convective clouds over West Africa
“ Properties of the tallest updrafts of Hector the convector



Assessment of cloud forecasts

CHUVA (“rain” in Portuguese): 6 field campaigns
between 2010 and 2014 (Machado et al. BAMS 2014)

CHUVA SUL from 15 November to 15 December 2012
focused on mesoscale convective systems

36-h daily forecasts with Méso-NH w/ Ax = 2 km
Assessment of forecasts using cloud tracking D“ra - e
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MSG observation, threshold Tir<235K and tracking

with ForTraCC* algorithm ws
S-band radar, CAPPI altitudes  Argent

2-15 km, threshold reflectivity>20 dBZ, ForTraCC*

2 sets of Méso-NH forecasts that differ in the |
turbulence parameterization: e

« 1D turbulence ‘

32°s

MESO-N

vertical flux only (horizontal flux neglected); BL89 mixing length W SW SEW  SeW  SZW  SW e
« 3D turbulence *ForTraCC: Forecast and Tracking
flux both in the vertical and the horizontal; Deardorff mix. length the evolution of Cloud Clusters

(Vila et al. Wea. Forecasting 2008)

Machado and Chaboureau, Mon. Wea. Rev. 2015



Tracking of cloud systems
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FIG. 7. Organization of clouds (Tir < 235 K) observed by MSG and simulated by Méso-NH with 1D and 3D turbulence for the 5 golden
days simulations. (a) Size distribution and (b) life cycle duration.

Too many small systems forecasted,
20% reduction with 3D turbulence

Too many short lifetime systems,
reduction with 3D turbulence

The tracking technique reveals
a major drawback in the forecasts

Machado and Chaboureau, Mon. Wea. Rev. 2015




Tracking of rain cells

Rain Cells Size Dist. Ref-20dBZ - Radar and Model - Dif. Turb. Param.
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F1i. 10. Reflectivity from S-band radar and Méso-NH simulations with 1D and 3D turbulence for Julian days 333 and 335 sim-
ulations. (a) Histogram of reflectivity at 2-km altitude and (b) normalized histogram of echo cloud-top height using the 0-dBZ
threshold.

Machado and Chaboureau, Mon. Wea. Rev. 2015




Sensitivity to the mixing length

Cloud Org. Size Dist. - Model Tir<235K - 30 Turb for Diff. Cloud Mixing Length
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Deep convective clouds over W. Africa

» What controls the distribution of precipitation over West Africa?

» Can CRMs simulate precipitation in a realistic manner?

Assessment of simulations with
* MSG observation, BT at 10.8 pm
« TRMM 3B42 rain product

Identification of cloud types

» Deep convective clouds BT<230K
 Cirrus anvil clouds 230K<BT<260K
* Low-level clouds BT>260 K

monsoon —
Two simulations of 6 days, starting at 00 UTC 9 June 2006:

e HiRes Ax=2.5 km, 3072 x 1536 x 72, 1/3 billion gdpts, 7 TB Tracking of DCCs
Overlap method a la ForTraCC

e LowRes Ax=20 km with KFB convective parameterization

e Standard Méso-NH parameterizations: ICE3 bulk Properties of DCCs
microphysics, 1D turbulence, RRTM radiation, dust by DEAD Rai louds. d .
+ ORILAM only radiative effects, outputs every 3 h ain, ctouds, dynamics, etc.

PhD work of Irene Reinares Martinez



Assessment of precipitation and DCCs

Added-value of HiRes
» Higher rain rate
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- Maximum occurrence of DCCs coincident with highest precipitation
- HiRes agrees well with TRMM. Less scattered precipitation for LowRes
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Precipitation and DCC clusters

%’ o0 | -« In the observations, DCCs

& contribute to ~70% of precipitation
o

g 60 » HiRes agrees with observations.

g LowRes underestimates the

2 407 - contribution of DCCs to precipitation
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:g  TRMM has larger DCC clusters and a
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larger dispersion in the distribution
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Deep Convective Cloud Tracking

OBS, longest trajectory = 48 h, nb trajectories = 62 SHDST, longest trajectory = 39 h, nb trajectories = 84
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SLDST, longest trajectory = 60 h, nb trajectories = 104

Trajectory of long-lived, medium-to- large S g
DCCs (duration > 6h; Deff> 120 km)  son o puta®e

% Simulated DCCs are more numerous  ®N ]

and have a shorter life than observed 2N

s DCCs propagate south-westward in the :2: : o
observation; more westward in the D ;m‘?tg,‘:.sﬁ?;"'
simulations SN U8 7 e

> Analysis of the properties of DCCs 15°W

currently under investigation

PhD work of Irene Reinares Martinez




Analysis of updrafts in a Giga-LES

eso-INH

Dauhut et al., Atmos. Sci. Lett. 2015 11



ldentification of the tallest updrafts

Step 1: detection of updrafts on every Step 3: Statistics of updrafts
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The tallest updrafts, why bother?

Very Deep Very Deep
Convection Convection
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The two tallest updrafts account for more than 90% of
the total mass flux into the Tropopause Tropical Layer

Dauhut et al., J. Atmos. Sci., 2016, accepted pending minor revisions



Formation of the tallest updrafts
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Propertles of the tallest updrafts

The tallest updrafts
that overshoot the
stratosphere are
larger,

stronger,

more buoyant,

Altitude (km)
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Conclusions

The object-based approach applied in different contexts allows us
To highlight the importance of a particular process
v The role of the tallest updrafts in the convective transport
To reveal salient properties of objects
The too large number of small cloud systems
v The too large number of DCCs propagating in a wrong direction
v The very low dilution of the tallest updrafts
To serve as a guide for developing parameterization

The number of cloud systems changes drastically with the
turbulence parameterization and the mixing length

Issue on big data: it needs a large volume of storage

The 17th AMS conference on mesoscale processes, 24-28 July 2017, San Diego, CA
welcomes papers on scale interactions and at the weather/climate interface



