Using 4-km WRF CONUS simulations to diagnose surface coupling strength
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Fig. 2. Ch (plotted using log-10 scale) for different land-cover types derived from FLUXNET were used to reconstitute the surface exchange coefficients Ch for spring and summer
observations, from the offline Noah-MP LSM simulation (the Default run), and from the 4-KM seasons. The observations have higher Ch for high canopy height vegetation than for
WRF CONUS run. These are midday (1000-1500 LST) values averaged for spring (MAM) low canopy height vegetation. Both the offline and coupled model tended to
and summer (JJA). The mecilan values for spring (summer) average Ch are shown in middle overestimate Ch for low canopy height vegetation such as grasslands, shrublands, and
lines. The bars represent 75% of all midday values of Ch for spring (summer) at each site. croplands. For the offline Noah-MP simulation, Chen’s new definition of czil (Chen and
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