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Uncertainties in representing land-atmosphere interactions can substantially influence
regional climate simulations. Among these uncertainties, the surface exchange
coefficient, Ch, is a critical parameter controlling the total energy transported from the
land surface to the atmosphere and directly impacts the land-atmospheric coupling
strength. Yet it has not been properly evaluated for regional climate models. This study
assesses the representation of surface coupling strength in 4-km WRF simulations
through comparing Ch values derived from WRF simulations with Ch values derived
from offline Noah-MP simulations, and from data collected at 15 FluxNet sites of the
Canadian Carbon Program (CPC) and AmeriFlux which represent four different eco-
climate regions. Surface coupling strength in WRF are evaluated by the seasonal
variations of Ch for different land-cover types in Canada. The impacts of uncertainties
on Ch in coupled WRF simulations and in offline Noah-MP simulations are also
evaluated.
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Concluding	Remarks	and	Future	Work
In this study, the land-atmospheric coupling strength was assessed using the offline

Noah-MP and the high-resolution (4 km) coupled WRF-Noah-MP model simulation for
different land-cover types and climate regimes. Multiple-year FLUXNET sites data
were used to reconstitute the surface exchange coefficients Ch for spring and summer
seasons. The observations have higher Ch for high canopy height vegetation than for
low canopy height vegetation. Both the offline and coupled model tended to
overestimate Ch for low canopy height vegetation such as grasslands, shrublands, and
croplands. For the offline Noah-MP simulation, Chen’s new definition of czil (Chen and
Zhang, 2009) was applied in M-O surface layer drag option. The results showed that
both the czil0.1 (with czil=0.1) and the new czil formulation improved the
overestimation of Ch for low canopy height vegetation. However, for czil=0.1, the
simulated Ch was underestimated for forests sites. While using new czil formulation,
the Ch results became more close to the observations. As to the biases between WRF 4-
KM CONUS simulations and the observations, the Ch biases increased with the
increases of the temperature, wind speed, and energy fluxes biases for low canopy
height sites (low Ch values). Future work will be to evaluate the new czil methods in
the coupled WRF-Noah-MP model.
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OBS: FLUXNET observations
Default run: Offline Noah-MP simulated surface layer drag using M-O option (Zot=Zom)
czil0.1: Same as Default run but using czil=Zot/Zom=0.1 instead
new czil: Same as Default run but using czil=10(-0.4h) instead
WRF: WRF 4-km CONUS run

Analysis Results

Fig. 3. Ch (plotted using log-10 scale) median values for different land-cover types derived
from FLUXNET observations, from the offline Noah-MP LSM simulation (the Default run,
czil0.1, and new czil), and from the 4-KM WRF CONUS run. These are midday (1000–1500
LST) values and averaged for spring (MAM) and summer (JJA).

Fig. 1. Locations of 15 FLUXNET sites (in dark circles) selected for this study, with 7 sites
from Canada and 8 sites from U.S.. The vegetation distribution based on the IGBP/MODIS
land cover classification is shown in different colors.
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Table 1.  General Information About 15 FLUXNET Sites Used in This Study 
Site Location Latitude, Longitude Elevation(m) Land-Cover Type Canopy Height(m) Years of Data Used 
US-Bkg 44.35,   -96.83   510 Croplands 0.2-0.4 2005-2007 
US-Aud 31.59, -110.51 1469 Open Shurblands 0.1-0.2 2003-2007 
US-Fpe 48.31, -105.10   634 Grasslands 0.2-0.4 2001-2007 
US-Wkg 31.74, -109.94 1531 Grasslands 0.5 2005-2007 
US-Var 38.41, -120.95   129 Woody Savannas 0.55+/-0.12 2001-2007 
US-ARM 36.61,   -97.49   311 Croplands 0-0.5 2003-2007 
US-Bo1 40.01,   -88.29   219 Croplands 3.0(mz)0.9(sb) 2001-2007 
CA-WP1 54.95, -112.47   549 Permanant Wetlands 3.4 2004-2007 
CA-Ca3 49.53, -124.90   153 Evergreen Needleleaf 7.6 2001-2007 
CA-Obs 53.99, -105.12   598 Evergreen Needleleaf 9.4 2001-2007 
US-NR1 40.03, -105.55 3050 Evergreen Needleleaf 11.5 2001-2007 
CA-Qfo 49.69,   -74.34   390 Evergreen Needleleaf 13.8 2004-2007 
CA-Ojp 53.92, -104.69   518 Evergreen Needleleaf 16.7 2001-2007 
CA-TP4 42.71,   -80.36   219 Mixed Forest 20.3 2002-2007 
CA-Oas 53.63, -106.20   580 Deciduous Broadleaf 21.5 2001-2007 
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Fig. 2. Ch (plotted using log-10 scale) for different land-cover types derived from FLUXNET
observations, from the offline Noah-MP LSM simulation (the Default run), and from the 4-KM
WRF CONUS run. These are midday (1000–1500 LST) values averaged for spring (MAM)
and summer (JJA). The median values for spring (summer) average Ch are shown in middle
lines. The bars represent 75% of all midday values of Ch for spring (summer) at each site.

Fig. 4. Scatter plots of the biases between WRF 4-km CONUS simulations and observations
for Ch (lg(Ch_wrf/Ch_obs)) versus Temperature (T_wrf-T_obs) in (a) spring and (b) summer,
for Ch versus wind speed (WS_wrf-WS_obs) in (c) spring and (d) summer , for Ch versus
sensible heat flux (SH_wrf-SH_obs) in (e) spring and (f) summer, for Ch versus latent heat
flux (LH_wrf-LH_obs) in (g) spring and (h) summer. The biases between WRF-4km CONUS
simulations and observations show that the biases of Ch increase with the increase of the
temperature, wind speed, energy fluxes biases in low canopy height sites which have low Ch
values. While the biases of Ch remain the same values as the increase of the temperature,
wind speed, and energy fluxes biases in higher canopy height sites.
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