

Dynamics and Nesting WG

Presented by Dr. Vijay Tallapragada, NCEP/EMC

Presented at NOAA Community Modeling Workshop April 18-19, 2017; College Park, MD

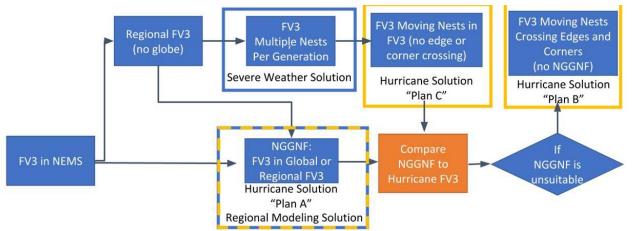
Dynamics & Nesting WG Membership

SIP WG Team Members

Last Name	First Name	Org
Tallapragada	Vijay**	NCEP/EMC
Harris	Lucas**	GFDL
Gopalakrishnan	Sundararaman**	HRD/AOML
Jablonowski	Christiane**	U. of Michigan
Black	Tom	NCEP/EMC
Trahan	Samuel	NCEP/EMC
Mehra	Avichal	NCEP/EMC
Juang	Henry	NCEP/EMC
Viereck	Rodney	NCEP/SWPC
Yudin	Valery	CIRES/CSU
Mahajan	Rahul	NCEP/EMC
Kleist	Daryl	NCEP/EMC
Fuller-Rowell	Tim	NCEP/SWPC

**SIP D&N WG Co-Chairs

NGGPS D&N Team Members


Last Name	First Name	Org
Wicker	Lou	NSSL
Sun	Shan	ESRL/GSD
Govett	Mark	ESRL/GSD
Putnam	Bill	NASA/GMAO
Goldhaber	Steve	NCAR/CGD/CESM
Zhang	Xuejin	HRD/AOML
Liu	Fei	NESII/ NEMS
Lin	Shian-Jiann	GFDL
Reinecki	Alex	NRL Monterey
Wang	Ning	ESRL/GSD
Jovic	Dusan	NCEP/EMC
Michalakes	John	UCAR (NRL)
Diaz	Steven	HRD/AOML
Bender	Morris	GFDL
Doyle	Jim	NRL Monterey

Dynamics & Nesting WG *Plans for Static and Moving Nests in FV*³

- Path forward is clear. This is a "doing" group not a "talking" group. Tasks include:
 - Implementation of moving nests for hurricane modeling purposes. Two potential solutions have been identified and will begin development.
 - Further improvements to nesting and stretching for regional applications, especially for high-resolution CAM modeling and WoF.
 - Model infrastructure (NEMS and FMS) support for these tasks
 - Computational efficiency and ease of use for research and operations drive the developments

Dynamics & Nesting WG *Plan for Deep Atmosphere Dynamics*

Scope: A deep atmosphere and variable-composition option, consistent with existing FV³ algorithm, for space weather prediction.

<u>**Philosophy:**</u> Minimizing changes to FV^3 dycore and introduce changes incrementally; utilize what we have done previously with WAM-GSM, except maintain use of potential virtual temperature rather than enthalpy

Requirements and Plan:

- Variable gas constant R_i & specific heats Cp_i with five tracers
- Extend vertical extent to ~10⁻⁷ Pa (~600 km) and add additional physical processes, including strong 3D molecular diffusion, interaction with plasma (ionosphere) on different magnetic field grid system, regridding with ESMF
- Deep atmosphere dynamics, variable geocentric distance r, gravity g(z), and extra terms in Coriolis force
- Ensure tolerance for T > 2000 K and U, V >1000 m/s, W >100 m/s

Dynamics & Nesting WG Key issues to resolve

- How can physics suites (new or from other models) and DA systems be best integrated with FV³? How can they take advantage of FV³'s variable-resolution capabilities?
 - This is where the community can contribute the most!!
- What further improvements can be made for nesting and grid refinement?
- What features do physics/DA/ensembles developers need from FV³? Stochastic physics, IAU, adjoints, WAM, etc.

 WAM Physics including horizontal diffusion and fast transport of major species; rapid response of thermosphere and ionosphere to space weather drivers; rapid updates to DA to resolve tides and meet space weather driver requirementsd

•Any changes to the dynamics would require close collaboration with FV³ core developers at GFDL and/or NASA-Goddard to ensure correctness of implementation.