

System Architecture Working Group

Presented by Dr. Jim Kinter, George Mason Univ.

Presented at NOAA Community Modeling Workshop April 18-19, 2017; College Park, MD

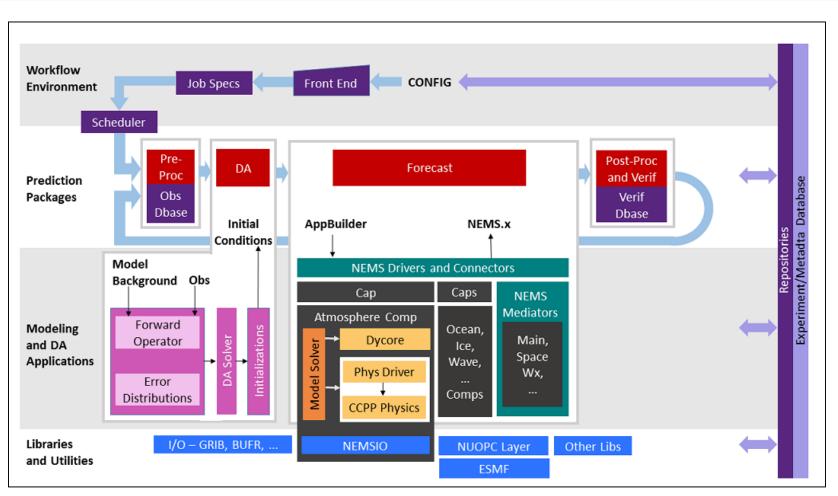
System Architecture WG Membership

Member	Affiliation	Member	Affiliation
Cecelia DeLuca (co-chair)	NOAA ESRL	Jim Kinter (co-chair)	COLA/GMU
Tom Auligne	JCSDA	Mark Iredell	NOAA NCEP
V. Balaji	Princeton	Jean-Francois Lamarque	NCAR
Rusty Benson	NOAA GFDL	John Michalakes	NRL
Ligia Bernardet	NOAA ESRL	Phil Rasch	DOE PNNL
Arun Chawla	NOAA NCEP	Suranjana Saha	NOAA NCEP
Philip Chu	NOAA GLERL	Vijay Tallapragada	NOAA NCEP
Tony Craig	NCAR	Gerhard Theurich	NRL/ESMF
Arlindo DaSilva	NASA GSFC	Sam Trahan	NOAA NCEP
John Derber	NOAA NCEP	Mariana Vertenstein	NCAR
Jim Doyle	NRL	Jun Wang	NOAA NCEP
Michael Farrar (ex officio)	NOAA NCEP	50% NOAA; 50% external	

SAWG initiated in October 2016 SAWG website: <u>https://esgf.esrl.noaa.gov/projects/sawg/</u> Initial SAWG report: <u>https://esgf.esrl.noaa.gov/site_media/projects/sawg/System_Architecture_31Mar2017.pdf</u>

System Architecture WG Definition and Relevance

- **Definition:** Fundamental organization of a system
 - Components
 - Relationships among components and the environment
 - Principles that govern its design and evolution
- Relevance for operational prediction
 - Backbone of a unified modeling system
 - High-performance, reliable, technical and scientific functions for a range of different forecast products
- Relevance for research community partners
 - Facilitates experimentation
 - Facilitates participation as full partners in model development


System Architecture Layers and Elements

AND ATMOSPHE

NOAA

DEPARTMENT OF CO

G'N NATIONAL OCE.

From *NEMS System Architecture Description*, result of the NEMS Code, Data, and Documentation Management Workshop 10 Sept. 1-2, 2016, College Park, MD: <u>https://esgf.esrl.noaa.gov/projects/nems-workshop/</u>

System Architecture WG Initial Findings

General Recommendations

- Meet the needs of stakeholders
- Be cost effective and timely
- Enable acknowledging, managing, and mitigating risks
- Be implemented using modern software engineering practices
- Be interoperable with coupling architectures at U.S. partner institutions

Technical Recommendations

- Document requirements for coupling, outputs, ensembles and data assimilation, workflows, and the interface between atmospheric dynamics and physics
- Support diagnostic interrogation of model output for testing, model evaluation, and operational prediction quality assessment
- Enable high scalability on current and emerging large, high-performance computer systems

System Architecture WG Initial Findings

Structural Recommendations

- Implement a layered design with clear interfaces that supports deployment of modeling and data assimilation applications at multiple organizations
- Link to governance processes that support the unified modeling system
 - Limit divergence of independent development paths
 - Authorize requirements and milestones
 - Review requirements, code, and processes for obsolescence
- Balance independence with coordination
 - Application development groups have their own requirements and timelines but need to share components and infrastructure as part of a unified modeling system

Modeling Application Recommendations

- Evidence included in initial report
 - Gap analysis (management, unified modeling, ESMF/NUOPC)
 - Sources of requirements
 - Interoperability case studies

System Architecture WG Initial Findings

Modeling Application Recommendations (cont.)

- Explore feasibility of replicating an existing science approach (e.g. GFDL) using NEMS, with test problems and metrics
 - leverage community interoperability infrastructure and expertise in coupled modeling
 - identify significant differences in framework capabilities
 - assess interchangeability of NEMS and non-NEMS components

• Establish new leads and processes (links to Governance WG)

- Standing science lead or steering committee responsible for direction of overall NOAA unified modeling system
- Formal processes that allow for external participation in technical and scientific decision-making
- Modeling system lead at EMC to serve as the primary POC and coordinator for coupling science and technology

• Partner with CESM and others in the community

- Engage coupled system science contributors from the broader community
- Develop community-friendly infrastructure
- Leverage established outreach and training programs in coupled modeling
- Understand best practices and restructure legacy scripts

System Architecture WG Key Issues to Resolve

Relationships among other aspects of system architecture and applications

- Data assimilation and ensemble applications
- Physics interface, including aerosols/chemistry
- Workflow layer
- Libraries and utilities layer
- Resolution of modeling application strategy following activities and tests
- Critically important governance issues to be resolved with the SIP
 Governance WG
 - Need for steering body responsible for overall unified modeling system
 - Need for a way to process and implement recommendations
 - Need for integrated and authorized requirements and milestones
- Software process issues to be resolved with the SIP Infrastructure WG
 - Need for modeling lead and software management
 - Need for development coordination across application teams
 - Strategies needed for community engagement in software processes
- Balancing demands on computing and human resources