FAA EDR Performance Standards

Project Summary and Recommendations

Presented To:

Turbulence Workshop - 2

Presented by:

Michael Emanuel Advanced Concepts & Technology Development, Aviation Weather Division, ANG-C63 September 4, 2014

Outline

- Background
- Project Team / Key Stakeholders
- Final Report
- Process
 - o Winds
 - Statistical Analysis
- Variability Analysis
- Performance Recommendations
- Follow-on Recommendations

Background

EDR is a calculated. There are multiple computational algorithms employing a variety of parametric data from diverse aircraft avionics.

Airline	Туре	Method	Count
American and others	B737-800, B757-200 B767- 300, A320, A321, A330-300	Vertical Acceleration	500+
Delta	B737NG, B767	Vertical Wind	167
Southwest	B737-700, B737NG	Vertical Wind	156
United	B757 (EDR equipped B737 no longer in fleet)	Vertical Acceleration	54 (reducing to 15 by Dec 31, 2015)
Regional Airlines via TAMDAR	SAAB 340, ERJ-145, ERJ- 190, ERJ-195, Beech 1900C, Dash 8 (Q-100, Q- 300, Q-400)	Longitudinal Wind (via TAS)	256

Total: 1133

 Aviation Rulemaking Committee and RTCA have recommended that EDR performance standards be established.

Project Team and Key Stakeholders

Final Report

- Delivered to FAA August 31, 2014
- To be briefed in detail to RTCA SC-206
- Distribution method is still TBD
- DOES NOT score implementation approaches

Standards Research Process

Input Winds

- Homogenous exercise <u>mean</u> EDR
 - Maintains single EDR on average throughout wind dataset (e.g. 0.5 EDR)

- Non-Homogenous exercise <u>peak</u> EDR
 - Simulate "burst" of turbulence embedded in background field of ambient turbulence

Variability Analysis

of Results

Algorithm Components

Consistency Performance Curve

Consistency Improvement Potential

Mean EDR Recommendations

Peak EDR Recommendations

Metric	Current Performance	Current Performance	Current Performance
	(FLT)	(MID)	(SPIKE)
¹ Bias	<u>+</u> 15.6%	<u>+</u> 18.3%	<u>+</u> 23.2%
² 70%-band	<u>+</u> 23.8%	<u>+</u> 26.9%	<u>+</u> 35.7%
² 99%-band	<u>+</u> 65.6%	<u>+</u> 69.2%	<u>+</u> 82.9%

Metric	Recommended	Recommended	Recommended	
	Standard (FLT)	Standard (MID)	Standard (SPIKE)	
¹ Bias	<u>+</u> 20%	<u>+</u> 20%	<u>+</u> 25%	
² 70%-band	<u>+</u> 25%	<u>+</u> 30%	<u>+</u> 40%	
² 99%-band	<u>+</u> 70%	<u>+</u> 70%	<u>+</u> 85%	

¹Bias is normalized to the "representative" expected value

² 70% and 99% bands are normalized to the "window length specific" expected value

Follow-on Recommendations

- Performance standard adoption
 - Validate in situ recommendations
 - Determine how compliance will be enforced
- Define operational requirements
 - Pursue broad ConOps for EDR
 - Perform application specific sensitivity analyses
- Continue variability analyses
 - Research additional algorithm components
 - Define parameter values for all components
- Pursue additional research into the science of EDR
 - Analyze impact of distorting assumptions
 - Define an approach to develop vertical EDR profiles
- Consider non-*in situ* EDR performance standards

Follow-on activities MUST have operational significance and benefit

Next**GEN**

Leverage momentum of Project Team's Success

Questions?

Vextc =N

Back-up Slides

Turbulence Intensity Thresholds

Org	Year	Aircraft	Flight	In Situ EDR Thresholds			
		Category	Levei	Null	Light	Moderate	Severe
ICAO	2001	Medium Transport	En Route	0.0 to <0.1	0.1 to 0.3	>0.3 to 0.5	>0.5
ICAO	2007	Medium Transport	En Route	0.0 to 0.1	>0.1 to 0.4	>0.4 to 0.7	>0.7
UCAR (EDR)	2011	Medium Transport	En Route	0.05	0.15	0.25	0.45
UCAR (GTG 2.0)	2011	Medium Transport	En Route	0.0	0.3	0.475	0.8
UCAR (GTG 2.5)	2011	Medium Transport	En Route	0.0	0.15	0.31	0.54
НКО	2010	Heavy Transport	Low-Level		<0.3	0.3 to <0.5	<u>></u> 0.5

In situ EDR Algorithms

NCAR Vertical Acceleration-Based Input: TAS, Altitude, Vertical Acceleration, Weight, Frequency Response, Mach, Flap Angle, Autopilot Status, QC Parameters Users: United Airlines Windowing: 10 sec window every 5 sec Average Calc: Arithmetic mean over 1 min Peak Calc: 95 th percentile over 1 Minute	Accelerometer-Based Input: TAS, Altitude, Vertical Acceleration, Weight, Frequency Response Users: American Airlines, others Windowing: 5 sec running window Average Calc: N/A Peak Calc: Largest EDR in 30 seconds
NCAR Vertical Wind-Based Input: TAS, Altitude, Inertial Vertical Velocity, Body Axis AoA, Pitch Rate, Pitch, Roll Angle, QC, Filter Parameters	Panasonic Longitudinal Wind-Based Input: TAS, Roll Angle for QC, TAMDAR Icing for QC (if using TAMDAR Sensor)

Users: Delta and Southwest Airlines

Windowing: 10 sec running

Average Calc: Median over 1 min

Peak Calc: Largest EDR over 1 minute

Users: TAMDAR - Regional Airlines

Windowing: 9 sec window

Average Calc: 1, 3, 7min; 300, 1500ft

Peak Calc: Largest EDR in 1, 3, 7min; 300, 1500ft

Implementation Details

Algorithm	Required Inputs				
ATR Algorithm Accelerometer-based	TAS Altitude Vertical Acceleration		Weight	Freq. Response	
NCAR Algorithm	TAS	Altitude	Vertical Acceleration	Weight	Freq. Response
Vertical acceleration-based	Mach	Flap Angle	Autopilot Status	Parameters for Quality Control Algorithms	
NCAR Algorithm	TAS	Altitude	Inertial Vertical Velocity	Body Axis AoA	Pitch Rate
Vertical wind-based	Pitch	Roll Angle	Quality Control	Filter Parameters	
TAMDAR Algorithm Longitudinal wind-based using TAMDAR Sensor	TAMDAR TAS		Roll Angle for quality control (TAMDAR calculated)	TAMDAR Icing for quality control	
TAMDAR Algorithm Longitudinal wind-based using aircraft bus data	Bus TAS		Roll Angle for quality control (TAMDAR calculated)		

Algorithm	Required Sensors							
ATR Algorithm Accelerometer-based	Body-Axis Vertical Accelerometer							
NCAR Algorithm Vertical acceleration-based	Body-Axis Dynamic Outside Vertical Accelerometer Static Pressure Pressure Temperature		Outside Temperature	Flap Position				
NCAR Algorithm Vertical wind-based	Attitude and Attitude Rate	Static Pressure	Dynamic Pressure	Outside Temperature	Accelerometer	AoA Vanes		
TAMDAR Algorithm Longitudinal wind-based using TAMDAR sensor	TAMDAR dynamic pressure (10.67 Hz)		TAMDAR Static Pressure or bus data	TAMDAR outside air temperature or bus temperature	TAMDAR roll calcula GPS track, TAS and heading	ated from ext. bus		
TAMDAR Algorithm Longitudinal wind-based using aircraft bus data	Bus TAS (based on aircraft static and dynamic pressure, and temperature		TAMDAR roll calculated from GPS track, TAS and ext. bus heading.					

