The role of "gray zone" convective model physics in highresolution simulations of the 2013 Colorado Front Range Flood

Kelly Mahoney

NOAA ESRL Physical Sciences Division

GEWEX Convection-Permitting Climate Modeling Workshop 6 September 2016

Motivation

- Deep convection "gray zone"
 - ~1 5-km grid spacing: relatively "high-resolution," explicit convection (EC) often used
 - Assumes model is capable of explicitly resolving convection on grid scale
 - Many studies question aspects of this assumption: Grid spacing still too coarse to fully resolve deep convection
 - Bryan et al. 2003; Deng and Stauffer 2006; Lean et al. 2008; Bengtsson et al. 2012; Gerard 2015
 - Efforts to adapt convective parameterization schemes (CPSs) for gray-zone scales
 - e.g., Gerard 2015; Liu et al. 2015; Bengtsson and Kornich 2016; Zheng et al. 2016

Motivation: Explicit convection benefits

- CP assumptions that break down with increasing horizontal resolution:
 - Limitations of "grid-box" state (i.e., growing importance of horizontal fluxes, need for communication with neighboring grid points)
 - Cloud lifecycle/temporal mismatches, overlapping with explicitly-resolved convection
 - Coarse approximations of effects of convection: latent heat release, etc.

Motivation: Benefits of employing CP at relatively fine grid spacings

- Challenges with explicit convection only in gray zone? Can justify some CP to:
 - Avoid unrealistic buildup of CAPE, spurious convection, gridpoint storms/over-done updrafts
 - Supplement cloud microphysics parameterization where needed
 - Represent shallow mixing (omission \rightarrow spurious stratus cloud cover)
- To what extent should "scale-aware" CP be pursued? Versus addressing via other model parameterization schemes?

Motivation: 2013 CO Front Range Floods

- 2013 Colorado Front Range Floods
 - 10 18 inches of rain, catastrophic flooding in north/central Colorado
 - Forecast challenges: role of model resolution, model physics?
 - Model gray zone relevance: extensive spatial and temporal scale + embedded convection
 - Breadth in space and time: sustained synoptic, mesoscale forcing → CP strengths?
 - Intense convective episodes: mesoscale convective organization → EC strengths?
 - Terrain-focused, yet significant forecast errors at many space, time scales

Study objectives

- Evaluate relative benefits of convective parameterization, explicit convection for 2013 CO Front Range Flood in 4-km grid spacing model deep convection "gray zone"
 - Community-available CP schemes (formulated for, used across various scales)
 - Newly-developed, "scale-aware" Kain-Fritsch scheme
 - Examine representation of convection both upstream and in location of observed flooding

VOLUME 144 MONTHLY WEATHER REVIEW MARCH 2016 Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme

YUE ZHENG

Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Weather Research and Forecasting (WRF) Model set-up

- Version 3.7.1
- 4-km horizontal grid spacing
- Explicit convection (Control)
- Thompson cloud microphysics
- CFSR initial, lateral boundary conditions
- 72-h simulations
- 00 UTC 11 Sept 00 UTC 14 Sept 2013

Weather Research and Forecasting (WRF) Model set-up

SONORA

CHIHUAHUA

COAHUI

Version 3.7.1 \bullet

 \bullet

ΤI

ullet

- 4-km horizontal grid spacing **Explicit convection (Control)**
- Thompson cloud ۲ microphysics
- CFSR initial, lateral boundary \bullet conditions
- 72-h simulations ullet
 - 00 UTC 11 Sept 00 UTC 14 Sept 2013

Treatment of convective parameterization	Experiment name
Explicit convection (No convective parameterization used)	EC
Kain-Fritsch (new Eta) scheme (Kain and Fritsch 1993)	KF
Multi-scale Kain-Fritsch scheme (Zheng et al. 2016)	MSKF
Betts-Miller-Janjic scheme (Janjic 1994)	BMJ
Grell-Freitas ensemble scheme (Grell and Freitas 2013)	GF
Old GFS simplified Arakawa-Schubert scheme (Pan and Wu 1995)	SAS-old
New GFS simplified Arakawa-Schubert scheme (Han and Pan 2011)	SAS-new

Results: 72-hour precipitation vs. observations

- Two main areas of heavy precipitation:
 - "Upstream" central-eastern New Mexico
 - "Downstream" Colorado Front Range
- EC simulation reasonably captures Front Range precipitation max (~250 mm/72 hours)

Results: 72-hour precipitation vs. observations – Colorado only

- Two main areas of heavy precipitation:
 - "Upstream" central-eastern New Mexico
 - "Downstream" Colorado Front Range
- EC simulation reasonably captures Front Range precipitation max (~250 mm/72 hours)

72-hour precipitation differences: Explicit – CP experiments

- Large errors/differences in upstream NM, downstream CO Front Range regions also across CO-KS border
- KF, GF, and SAS-old schemes under-represent (> 100 mm difference) in heavily flood-impacted COFR

How active were the various CP schemes at 4-km grid spacing? Convective precipitation only:

72-hour convective precipitation (mm)

- Original KF most active, particularly upstream
- Scale-aware schemes notably less active

How active were the various CP schemes at 4-km grid spacing? Convective precipitation only:

• KF, MSKF represent ends of the CP experiment spectrum \rightarrow focus on EC, KF, MSKF

Influence of upstream CP error on downstream precipitation

• EC, KF Precipitation starts to diverge strongly in Eastern NM, CO Front Range ~24+ hours into simulation

Influence of upstream CP errors on downstream precipitation: Low-level PV and sea-level pressure

850 hPa – 650 hPa layer-average potential vorticity (PVU, shaded) and (terrain-corrected) sea-level pressure (hPa; black contours) valid 12 UTC 12 September (36 hours into simulation period)

- Low-level PV: latent heating "footprint" on low-level dynamic fields
- KF simulation:
 - Heavy CP precip in eastern NM, CO \rightarrow low-level PV maximum in eastern CO
 - Surface low pressure deepens beneath, inverted ridge strengthens to west
 - Diminished upslope flow in CO Front Range, enhanced forcing further northeast
- EC, MSKF simulations \rightarrow sustained low-level easterly flow in the COFR \rightarrow prolonged upslope precipitation

Influence of upstream CP errors on downstream precipitation

700-hPa moisture flux (x10 g kg-1 m s-1, shaded & vectors, valid 18 UTC 12 September (42 hours into simulation)

- See evolution clearly in moisture flux/transport as well
- Upstream KF precip overdone; enhances moisture flux too far east (CO-KS); disrupts moisture flux and upslope flow in CO Front Range

Summary and future work

- > 2013 Colorado Front Range flood simulations run in 4-km Δx "deep convection gray zone"
- Large sensitivity to CPS choice in Colorado Front Range (COFR), eastern New Mexico (ENM)
 - ▶ KF, GF, and SAS-old schemes: active CP upstream in NM; far under-predict (> 100mm) in COFR
 - ➢ Greater CPS activity upstream → errors in latent heating and low-level flow/moisture transport → significant downstream model error
 - > New scale-aware KF scheme very similar to EC simulation/observations
- Notable sensitivity:
 - Experiments run as simulations (i.e., boundaries updated with analyzed not forecast conditions)
 - 4-km Δx: expect most precipitation to be explicit
 - Surprising that CPS choice at these space, time scales \rightarrow 3-day precipitation differences > 100 mm?

Summary and future work

- ~4-km Δx increasingly common for operational weather, regional climate
 - > Explicit convection likely best for extreme precipitation, propagating convection
 - Omission of CP may be problematic for climate simulation of land-surface, PBL, shallow mixing processes
 - Do we really understand the types of cases, events, environments where even scale-aware CP may fail? Where EC fails?
- How to best address gray zone considerations of shallow convection, PBL mixing/processes, etc?
- Treat separately and forego CP from now on, or dig into scale-aware CP?
- Future work: Assess NA-CORDEX extreme precipitation for related issues

Acknowledgements

- Prof. Gary Lackmann
- Dr. Rob Cifelli
- Unidata IDV
- NCAR/WRF

• Associated paper available via Early Online Release: http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-16-0211.1

> Contact: Kelly Mahoney kelly.mahoney@noaa.gov