Cloud distributions over CONUS in recent two decades

Preliminary results of cloud climatological study combining MODIS and CONUS404 data

Trang Thuy Vo (tv0015@uah.edu) The University of Alabama in Huntsville

Lulin Xue Sisi Chen RAL, NCAR Leiqiu Hu The University of Alabama in Huntsville

Why it is important to understand cloud distribution in climate models?

- Clouds: a very sensitive and **uncertain** component of the climate system (Stephens et al 2005, Bony et al 2015)
- Climate model: important tool to understand climate evolution and predicting climate changes

• Cloud distribution should be understood and validated properly in climate models.

Which factors causing the cloud uncertainties in traditional climate models?

Source: The COMET Program, UCAR.

Recent continental-scale convection-permitting modeling of current and future climate of CONUS (CONUS404) (Liu et al 2017)

But, still, models have

uncertainties...

The unique of CONUS404

- More finer spatial resolution \Rightarrow able to capture hydrological cycle
- Permits **convection** and resolves mesoscale orography at 4-km grid spacing

 \Rightarrow address the changes in heavy precipitation and other extremes

As **clouds** are tightly coupled to hydrological cycles and radiative balance

understanding the uncertainties of **cloud distribution** in CONUS404 is a **key** to understand the model performance

improve model predictions

(1) Comparison of **cloud distribution** from MODIS/CONUS404 regionally and temporally

Research questions

 (2) Cloud climatology analysis across CONUS in recent 2 decades (2002 - 2020). What are seasonal and diurnal variations of each cloud type across CONUS?

Study domains and Methods

- ✤ Dataset:
- 1. Satellite observations (Aqua MODIS Cloud mask layer (MYD35-L2)
 - twice a day (~13:30 and 1:30 equator passing time),

simulation

% of cloudy pixels over 31 days x 18

vears

Cloud Frequency estimation

- 2002 2020
- 1 km
- 2. Long-term convection-permitting (CONUS404)
 - Hourly
 - o 2002 2020
 - 4 km
 - Cloud frequency (%): percentage of days with cloudy pixels for a certain month within 18 years

MODIS

CONUS404

An example of **MODIS** (top) and **CONUS404** (bottom) composite cloud frequency maps for July **daytime**

20

Study domains and Methods

- Regridding MODIS grids to corrected CONUS404 grids
- Interpolation method: linear interpolation

Study domains and Methods

- Definition of cloudy pixels
- **MODIS:** pixels are classified as 'probably' and/or ₈₀₀- screening algorithm (Ackerman et al 1998)
 - ⇒ MODIS cloud screening algorithm faces most u Wang 2015)
- **CONUS404:** Cloudy pixels: pixel with a maximur larger than **0.01 (1%)**

5%

2013-07-15:20:00:00 UTC

Seasonality

MODIS

CONUS404

MODIS - CONUS404

Daytime

Seasonality

MODIS

Cloud modis composite for month 1 at : Nighttime

8

Cloud frequency

-20

10 ^(%)

0 0 -10 O -20

MODIS - CONUS404

Nighttime

Cloud distribution MODIS/CONUS404

- CONUS404 underestimates clouds as compared to MODIS;
- **Diurnal**: daytime difference (7 12 %, median) is stronger than nighttime difference (4 6 %)

 Seasonal: daytime: strongest difference in December (~ 12%); Nighttime: in June (~ 6%)

Cloud modis composite for month 7 at : Daytime

20

ariance / Nighttime

Nighttime:

- Overall, nighttime regional patterns show stronger agreements, except for South East
- CONUS404 overestimates in transition months (Mar, Nov) in South East

regional variance of croud distribution in CONUS404 during the nighttime

Part 1: By observing regional and temporal variance in MODIS/CONUS404 cloud distribution comparison

 \Rightarrow there are some underlying mechanisms causing such differences

Part 2: Cloud climatology analysis of different cloud **types** using CONUS404 product

 \Rightarrow better understanding the <u>physical mechanisms</u> causing such different cloud patterns (as each cloud is relevant to different physical processes)

Diurnal and seasonal variations of clouds

Precipitating / Non-precipitating cloud climatological analysis

- Precipitating clouds: the maximum cloud fraction experienced the accumulated rainfall rate larger than 0.01 mm/hr
- Non-precipitating clouds: the maximum cloud fraction experienced the accumulated rainfall rate smaller than 0.01 mm/hr

PREC_ACC_NC: ACCUMULATED GRID SCALE PRECIPITATION OVER PREC_ACC_DT PERIODS OF TIME

Non-precipitating clouds

Precipitating clouds

2013-07-15 20:00:00 UTC

- Stronger frequencies of non-precipitating clouds
- Similar diurnal patterns

Low-mid-high cloud climatological analysis

- Definition of different cloud type
 - Low-level clouds: the maximum cloud fraction within a vertical height: 300 m to 2000 m
 - Mid-level clouds: the maximum cloud fraction within a vertical height: 2000 m to 6000 m
 - High-level clouds: the maximum cloud fraction with the vertical height larger than 6000 m

High-level clouds

Low-level clouds

Cloud low clouds composite for month 10 at : 0:00 UTC

Cloud low clouds composite for month 4 at : 0:00 UTC

-100

Diurnal and seasonal variations of low-mid-high clouds

Take home messages

1. MODIS/CONUS404 cloud distribution

- CONUS404 underestimates clouds as compared to MODIS
- Daytime clouds show stronger disagreement as compared to nighttime clouds
- South East experienced the most disagreements, particularly in the summertime

2. Cloud climatologies across CONUS

- Strong seasonality of clouds across CONUS
- Double-peak clouds in summertime; one-peak in another seasons
- Smaller precipitating clouds magnitudes as compared to non-precipitationg clouds

Future research

- Integrate more sources of satellite observations with more detailed diurnal representation (e.g., GOES-16) to verify the certainties of diurnal cloud products from CONUS404
- Define the potential factors causing the cloud uncertaincies in CONUS404 (e.g., land cover, moisture level, aerosols) for each different cloud types
- Define another appropriate criteria for low-mid-high clouds analysis