In-Flight Icing Products for Helicopters

Ben C. Bernstein
National Center for Atmospheric Research
In-flight Icing Product Development Team
FAA – Aviation Weather Research Program
In-Flight Icing

- Encounters with supercooled liquid water
 - Liquid water at T < 0°C
 - Ram air rise, depending on aircraft speed
 - Clouds
 - Precipitation (FZDZ, FZRA) – SLD

- Most helicopters are not certified for icing
 - Avoidance is the focus
 - Clouds, precipitation at T < 0°C (+10°C & vis moist – engine)
 - Some have ice protection
 - Good to avoid icing
 - If you’re going to encounter it
 - Where will it be (3-D space)
 - When will it be there?
 - How likely is it?
 - Will there be large drops? Certification is for small drop icing.
 - How severe will it be?
IFIPDT Products – CIP & FIP

- Current Icing Product (CIP)
 - Hourly diagnoses of icing, blending info from many sources
 - 20km horizontal spacing CONUS & surroundings
 - 1000ft (305m) vertical spacing
 - Icing Probability – Chance of ANY icing (avoidance)
 - SLD “Potential” – Uncalibrated chance of large drops
 - Icing Severity – Categorical (trace, light, mod, heavy)
 - Fully operational Dec 2006, pending approval
 - Will be usable by pilots, dispatchers, meteorologists
 - Current operational version
 - Icing “Potential”, SLD “Potential” - on Operational ADDS (Thompson)
 - Severity available on Experimental ADDS

- Forecast Icing Product (FIP)
 - Forecasts out to 12 hours, updated every 1-3 hours
 - Operational Products: Icing Potential, SLD Potential
 - Experimental Severity in March 2007, Operational Fall 2008

- Alaskan versions – Experimental. Operational: FY09, FY10
The CIP Concept
Step 1: Place datasets onto a common grid

Step 2: Find the 3-D locations of clouds and precipitation

Step 3: Apply fuzzy logic membership functions to icing-related fields to create interest maps

Step 4: Determine the physical icing scenario using a decision tree

Step 5: Situationally calculate the initial icing, SLD potential and Icing Severity

Step 6: Boost initial values using VV, SLW, PIREPs, satellite, radar, etc.

Icing Probability, SLD Potential, Icing Severity
The FIP Process

Step 1: Only use the model grid

Step 2: Find the 3-D locations of clouds and precipitation

Step 3: Apply fuzzy logic membership functions to icing-related fields to create interest maps

Step 4: Determine the physical icing scenario using a decision tree

- Single-layer cloud
- Multiple cloud layers
- Cloud top temperature gradient
- Classical freezing rain
- Deep convection

Step 5: Situationally calculate the initial icing, SLD potential and Icing Severity

Step 6: Boost initial values using VV, SLW, PIREPs, satellite, radar, etc.

Icing Probability, SLD Potential, Icing Severity

- ICING=0.0
- SLD=0.0
- Severity=None

Regular Gridded Field
Irregular Field
Processing/Analysis
Decision Tree
Results
Examples of CIP (Icing Probability)

- Unprotected
 - Any chance of icing = no go?
- Protected
 - Where do you draw the line?
 - Mission dependent?
- Visible moisture (T < +10°C)
Examples of CIP (SLD Potential)

- Protected, but not for SLD!
- Any chance of SLD icing = no go?
Examples of CIP (Icing Severity)

- Unprotected
 - Trace or higher = no go?
- Protected
 - Where do you draw the line?
- Put icing into context of other things
 - C/V, winds, turb, traffic, MVAs
Thank You

Ben C. Bernstein
IFIPDT Alternate Lead
bernstei@rap.ucar.edu
(303) 497-8424