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What Does Machine Learning See That Old Statistical

Methods Did Not?
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Machine Learning for Probabilistic Forecasting

Most machine learning algorithms do not have native support for probability of exceedance forecasts, but
they are very well suited to categorical forecasts.

By dividing the range of possible generation values into categories, and predicting the probability of each
category, we can interpolate among the probabilities
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Sample Probabilistic Forecast

Here are four consecutive 24-hour solar generation forecasts, showing the 0.1%, 2.5%, 25%, 50%, 75%,
97.5% and 99.9% probability of exceedance forecasts, along with the actual generation for a large utility
territory, with total installed capacity of 30.4 GW.
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Sample Probabilistic Forecast

Ignorance and Reliability skill metrics for the forecast shown above.
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Conclusions

We’re working hard to make the most of the generation data and NWP forecast and satellite imagery
archives we’ve built up over the years. Machine learning techniques have made real contributions to our skill
in using these archives to train forecasts of renewable generation, but we believe we’re at an early stage in
realizing their full potential.



