Wind Characteristics and Forecasting Challenges

Bill Mahoney, Program Director
Gerry Wiener, Engineering Deputy
National Center for Atmospheric Research
Boulder, CO
What is the National Center for Atmospheric Research (NCAR)?

- NCAR is a Federally funded research and development center sponsored by the National Science Foundation.

- NCAR is operated by the University Corporation for Atmospheric Research (UCAR), a non-profit corporation formed in 1959.

- UCAR has 1400 employees and ~$250M budget.

- Research is conducted on solar physics, climate and weather modeling, air chemistry, thunderstorms, hurricanes, icing, turbulence, societal impacts of weather, energy, etc.

NCAR, Boulder, CO
Research Areas:

- Climate Science
- Air Chemistry
- Solar Physics
- Weather Research
 - boundary layer
 - thunderstorms
 - weather models
 - hurricanes
 - land surface
 - coupled models
- Social Sciences
- Supercomputing
- Technology Transfer

National Center for Atmospheric Research (NCAR)
Research Applications Laboratory

Mission

- Perform applied R&D geared toward weather related decision support systems
- Transfer knowledge and technology to U.S. government agencies, the private sector, and foreign governments
Wind Energy Related Research at NCAR

- Weather modeling (global to urban scales)
- Wind characterization (how the wind blows)
- Data assimilation (combining obs and forecast)
- Probabilistic Prediction (ensemble modeling)
- Boundary layer research and modeling
- Applied mathematics & statistics
- Land surface modeling (land climate interaction)
- Coupled models (atmosphere and ocean)
Wind Prediction Challenges

Scale Interactions are Critical

Global Scales

Continental Scales

Regional Scales

Local Scales

Long Island

Urban Scales

Copyright 2010 University Corporation for Atmospheric Research
Wind Prediction Challenges

Local Effects & Phenomenon Must be Addressed

- Local Topography
- Surface Roughness
- Land Use
- Vegetation Characteristics
- Urbanization
- Atmospheric Gravity Waves
- Low-level jets
- Convection currents
- Icing
Atmospheric Boundary Waves
Weather predictions are inherently non-precise due to uncertainties in:

- state of the atmosphere
- analyzed initial state
- model resolution
- model physics/parameterizations
- coarse treatment of surface characteristics
- many other simplifications
Atmosphere is a Fluid

Water vapor simulation
Wind Prediction Challenges

Complex Atmospheric Flows

A lot of details are missed between observations!

Balloon soundings

Photo by Bob Henson (UCAR)
GE 1.5 MW
Wind Turbine

80 meter hub height (87 yards)
77 m blade diameter
GE 1.5 MW Wind Turbine

80 meter hub height
77 m blade diameter

Standard surface weather station with a 10 meter (33 ft) high wind sensor.

Assessments & Forecasts

observation

60-80 m

10 m
Statistical post processing will be required to address local effects.

- Regression Techniques
- Neural Network
- Data Mining
- Etc.

Data Needs:

- Turbine height wind speed & direction
- Energy output
- Generator availability
Wind Turbine Size Growth

Size of Wind Turbines

Hub height

150 m

100 m

15-20 m

50 kW Ø 15 m

100 kW Ø 20 m

500 kW Ø 40 m

600 kW Ø 50 m

2,000 kW Ø 80 m

4,500 kW Ø 120 m

10,000 kW Ø 180 m

Copyright 2010 University Corporation for Atmospheric Research
Important Atmospheric Boundary Layer Phenomenon

Low-level jets

Low-level jets can damage generators and reduce lifecycle
Flows in Complex Terrain

Clark-Hall model simulation

- Five nested domains
- Inner domain 250 m horizontal resolution
- Initialized with RUC model 2200 UTC 20 Dec 2008
- Vertical cross-section through DIA
- Model showed extreme gustiness at Denver International Airport associated with lee wave amplification

21 Dec 2008 -0118 UTC
Boeing 737-500

Copyright 2010 University Corporation for Atmospheric Research
Important Atmospheric Boundary Layer Phenomenon

Ramp-down events
Ramp-up events

Unanticipated ramp events are very costly

Example of Local Effects

Fine-scale Modeling Study

Cedar Creek Wind Farm, Northeast Colorado
Photo by Carleye Calvin, UCAR
274 Wind Turbines at Cedar Creek, Co.

Wind Speed at turbine nacelles
WRF Domains for Intra-farm Wind Studies

D1: 30000m 128x114
D2: 10000m 184x169
D3: 3333m 244x247

D4: 1111m 331x346
D5: 370m 505x490
D6: 123m 262x268
D7: 123m 280x271

Cedar Creek Wind Variation Study

Ramp studies

Terrain height

Photo by Bob Henson (UCAR)
Modeled Wind Speeds at 15m AGL

D5: DX = ~370 m
Every 10 minutes
From: Nov.14, 2008 23:00
To: Nov.15, 2008 19:00

△ Cedar Creek

Wind Speed Variability
Comparison of intra-farm wind variations simulated by different model grid resolutions

(By interpolating model prediction to the turbine sites)
Wind Energy Nowcasting

Causes of Wind Ramp Events

- Cold Fronts
- Warm Fronts
- Thunderstorm Outflows
- Sea Breezes
- Microbursts
- Gravity Waves
- Eroding Surface Inversion
- Momentum mixing

Photo by Bob Henson (UCAR)

Copyright 2010 University Corporation for Atmospheric Research
Wind Energy Nowcasting

Gust fronts approaching ‘wind farm’

Wind ramp event is imminent

Need to provide time-of-arrival and magnitude of wind energy ramp.
Wind Energy Nowcasting

Gust fronts approaching 'wind farm'

Wind ramp event is imminent

NCAR Auto-Nowcasting System

Copyright 2010 University Corporation for Atmospheric Research
Thunderstorm-induced Wind Energy Ramp Events
Climate Variability & Wind Resource Assessment

Quantifying interannual variability

January winds at 0600 UTC (2300 MST)

Need to understand climate variability for wind resource assessment – (for example, La Nina vs. El Nino)
Summary

- Wind characterization and prediction is complex as wind is influenced by global, regional, and very local conditions.

- Wind energy prediction requires complex data assimilation, physics models and statistical post processing techniques that take advantage of wind plant data.
THANK YOU