Introducing the Multi-Scale Kain-Fritsch scheme to the Model for Prediction Across Scales Allison Michaelis¹, Kiran Alapaty², and Valentine Anantharaj³

¹Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University ²Systems Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency ³National Center for Computational Sciences, Oak Ridge National Laboratory

Background

 \diamond Clouds are critical players in the earth's climate system \diamond Impact radiation balance, surface temperatures, and precipitation generation

- ♦ Influence creation of stratospheric ozone
- \diamond Motivation:
 - ♦ Most mesoscale models neglect interaction between convective parameterization (CP) and radiation scheme
 - ♦ CP schemes have not been adapted for new variableresolution model grids
- **Project Goal:** Test the performance of the scale-aware Multiscale Kain-Fritsch (MSKF) CP scheme in the Model for Prediction Across Scales (MPAS)

Methods

- \diamond Multi-scale Kain-Fritsch (MSKF) CP scheme includes: \diamond Dynamic adjustment timescale
 - ♦ Scale dependent entrainment effects
 - Sub-grid scale interactions between clouds and radiation, among other features
- \diamond Model for Prediction Across Scales (MPAS) v. 4.0
 - \Rightarrow 15-60 km variable resolution mesh (Fig. 1)
 - \diamond Mesoscale reference physics suite:
 - ♦ WSM6 microphysics scheme
 - ♦ YSU planetary boundary layer scheme
 - ♦ RRTMG radiation schemes
 - ♦ Noah land-surface model
 - ♦ CP scheme: MSKF and KF

 \diamond NCEP Climate Forecast System Reanalysis (CFSR) $\Rightarrow 0.5^{\circ} \times 0.5^{\circ}$ horizontal grid spacing

 \diamond Used for initial conditions and surface update fields

 \diamond Simulation spanned 15 May 2006 – 14 August 2006 ♦ Conducted on DOE supercomputer *Titan*

Low Resolution (60-km)

Figure 1. Image from http://mpas-dev.github.io/ showing the high-resolution (15-km) mesh over the U.S. expanding to the low-resolution mesh (60-km) elsewhere.

