CLOUD PHASE Feb 20, 2015 14:45 UTC

Near-Real Time Global and Regional Cloud Properties for Aviation Safety

Patrick Minnis, William L. Smith, Jr., Kristopher M. Bedka, Louis Nguyen NASA Langley Research Center, Hampton, VA

Rabindra Palikonda, Douglas Spangenberg, Thad Chee, Qing Trepte, Christopher Yost SSAI, Hampton, VA

> In-Flight Icing Users Technical Interchange Meeting (TIM), Washington, DC, 25-26 February 2015

	LIQ CLD T>273K	LIQ CLD T<273K	LIQ CLD WEAK	ICE CLD	ICE CLD WEAK	CLEAR	NO CLD RETRVL	NO/BAD DATA	SNOW/ ICE
PHASE									
			G13 CLO	UD PHASE	FEB 20,	2015 14:	45Z NAS	A LARC	

OBJECTIVES & APPLICATIONS

- Produce well-characterized consistent regional & global cloud and surface property datasets at all time & space scales
 - use intercalibrated data
 - use consistent algorithm as much as possible
 - analyze data in real time with minimal lag times
 - validate data as much as possible using independent measures
 - improve as state of the art advances
 - use satellites needed to cover variety of domains
 - LEO: MODIS, VIIRS, & AVHRR
 - GEO: GOES, Meteosat, MTSAT, FY-2, COMS
 - future: INSAT, Himiwari-8 & GOES-R
- Work with researchers and operations to use data for weather research & applications
 - nowcasting => icing, HIWC, severe storms
 - NWP model assimilation: work on all time and space scales
 - global, continental, and regional

Standard Cloud/Radiation Parameters

Standard, Single-Layer VISST/SIST

0.65, 1.2, 1.6, 2.1 μm Reflectances
3.7, 6.7, 10.8 μm Temp
12 or 13.3 μm Temp
Broadband Albedo
Broadband OLR
Clear-sky Skin Temperature
Icing Potential
Pixel Lat, Lon
Pixel SZA, VZA, RAZ

<u>Cloud</u>

Mask, Phase Optical Depth, IR emissivity Droplet/Xtal effective radius Liquid/Ice Water Path Effective Temp, height, pressure Top/ Bottom Pressure Top/ Bottom Height Overshooting top (OT)

• Primary channels: 0.65, 3.7, 10.8, 12.0 µm

- Minnis et al., TGRS, 2011
- lapse rates from Sun-Mack et al (2014)
- Secondary channels for mask & snow retrievals
 - 1.38, 1.2, 1.6, 2.1 µm (not on AVHRR or most GEOs)
 - 6.7, 13.3 µm (not on AVHRR, VIIRS)
 - Minnis et al. AMS, 2010

Additional Cloud Parameters MODIS, VIIRS; soon: Himiwari-8 & GOES-R

New Size Retrievals

Water droplet eff radius (1.24 μ m)

Ice effective radius (1.24 μ m)

Water droplet CER(2.1, 1.6 µm)

Ice CER (2.1, 1.6 μm)

Multilayer Cloud Retrieval

CO2 Slicing

Cloud Top Pressure

Cloud Top Temperature

Cloud Top Height

IR Emissivity

(Ice Over Water)

Multilayer Identification (GOES and Meteosat also)

Upper Layer (Ice Clouds)	Lower Layer (Water Clouds)
Cloud Top Pressure	Cloud Top Pressure
Cloud Top Temperature	Cloud Top Temperature
Cloud Top Height	Cloud Top Height
Cloud Visible Optical Depth	Cloud Visible Optical Depth
Ice Effective Radius (3.7 µm)	Water Droplet Radius (3.7 µm)
Ice Effective Radius (2.1 µm)	Water Droplet Radius (2.1 µm)

GEO Retrievals, Hourly 2100 UTC, 12 November 2014, Cloud Effective Height

- Cloud properties computed each hour for each satellite
- 30° longitudinal gap over India (Indian Gap) to be closed in 2015
- Many other domains and time (15 30 min) and space (full res) scales

Regional Domains

Multichar

Alaska, 4 km, Half Hourly

North American Domain

• Half-hourly analyses from GOES-East and GOES-West

- Data pushed to NCEP
 - assimilated in Rapid Refresh (RAP) NWP model
 - Available to anyone with access to NCEP input products

Polar-Orbiting Satellites: Global and Polar

Cloud properties also determined from AVHRR, MODIS, and VIIRS 2-h lag over some polar regions, longer lags elsewhere

White: clear snow; Cyan: SLW cloud; Blue: warm liquid; Red: ice cloud; Green: clear

Data Can Be Accessed At cloudsgate2.larc.nasa.gov

VISST Cloud Product Page

Domain: GOES-WEST Full Disk Cloud Product

Show Multi-Panel Imagery

Single Image ----

Multi-channel RGB

Date

Image /

0.65µm Reflectance Cloud Phase **IR Emittance Optical Depth Effective Water Radius** Effective Ice Diameter Liquid Water Path Ice Water Path Effective Cloud Temperature **Cloud Top Height** Effective Cloud Height **Cloud Base Height Cloud Top Pressure** Effective Cloud Pressure Cloud-Base Pressure Broadband Albedo Broadband Longwave Flux Icing Potential 11 Micron Brightness Temp Bright, Temp. Diff. 3.9-10.7µm Bright. Temp. Diff. 6.8-10.7µm Bright. Temp. Diff. 10.7-12µm **Cloud Thickness**

RAD er Multi-Lay ng 1800 UTIPredi el (RED=R Dec 17,

NASA

User Warning, Please read !

<u>Satellite Calibration</u>

ver

DARAD

Minnis Group Homepa Real Time Reference

	FULL-DISK CI	LOUD PRODUCTS (Rea	al Time)	
GOES-WEST	GOES-EAST	METEOSAT	FENG-YUN	MTSAT
2	ew!! Merged Global G	eostationary Gridded Cl	oud Products New!	1
		CLOUD PRODUCTS		
GOES WEST	GOES EAST	METEOSAT	TWP DOMAIN	NOAA 15/16/17 an TERRA/AQUA
North Ame	erica (RR)	WEST EUROPE	MTSAT	ARM-SGP
West CONUS	East CONUS	EUROPE	MANUS	ARM-NSA
MERGED	CONUS	ARM-NIAMEY	AMIE (MTSAT and FENG-YUN)	COVE
ARM-SGP	ARM-SGP		HIWC	New!! Alaska/NPacific
ARM-NSA	MACPEX		GOES-9	
New!! Alaska/NPacific	COVE		NAURU	
Monterey			DARWIN	
time and Historical S ical image loops for va	atellite Imagery Loops: Th rious satellites.	ne links from the table belo	w provide access to the r	eal-time (blue cells) ar
Mid-West US (SGP)	Northeast US	Mid-Atlantic US	Southeast US	CONUS
Pacific GOES-E	Pacific/West	TWP DARWIN MTSA	T TWP DARWIN FY	2C TWP DARWIN MTSAT & FY2
	Florida		GMS-5 TWP	PACS EPIC
America GOES-W	N. America GOES-E			
	SGP 1KM VIS GOES-E			
	FULL-	DISK SATELLITE IMAGE	RY	
OES-WFD GOES	EFD MET/0E FD	MET-7/57E FD FY20	P/86E FD FY2C,E/10	5E FD MTSAT F
	СОМРО	SITE SATELLITE IMAG	ERY	
			Cout	h Pole MODIS
Global Geost	ationary	North Pole MODIS	<u>3001</u>	
Global Geost	ationary xorrectly. Please check the Ja	North Pole MODIS	Whittaker if you have diffic	ulty viewing the images.
Global Geost Applets may not work of d Products derived a	ationary correctly. Please check the Ja t Ground Sites	North Pole MODIS	Whittaker if you have diffic	ulty viewing the images
Global Geost Applets may not work of d Products derived at VISST - Computer	ationary correctly. Please check the <u>Ja</u> t <u>Ground Sites</u> d from pixel retrievals in	North Pole MODIS	Whittaker if you have diffic	ulty viewing the images
Global Geost a Applets may not work of id Products derived at • <u>VISST</u> - Computer + Real Time Sites:	ationary correctly. Please check the <u>Ja</u> t <u>Ground Sites</u> d from pixel retrievals in	North Pole MODIS	Whittaker if you have diffic	ulty viewing the Images
Global Geost Applets may not work of d Products derived at • <u>VISST</u> - Computer <u>+ Real Time Sites:</u> <u>NASA Glenn I GOE</u> <u>Cabauw Netherland</u> <u>COPS I</u>	ationary correctly. Please check the Js t Ground Sites d from pixel retrievals in <u>-</u> <u>S-W SGP I GOES-E SGP I : s I Lindenberg Germany I P</u>	North Pole MODIS ava Applet Notes from Tom Inside a 10 km or 20 km TWP Nauru TWP Manus otenza Italy Atgasuk Ba	Whittaker if you have diffio n radius centered on t 1 <u>TWP Darwin I SIRTA F</u> rrow I <u>Oliktok I Toolik I C</u>	ulty viewing the images the site. rance I Chilbolton U.K OVE I Niamey Nigeria
Global Geost Applets may not work of d Products derived at VISST - Computer + Real Time Sites: NASA Glenn I GOE Cabauw Netherland COPS I + Past IOP Sites:	ationary correctly. Please check the <u>Ja</u> t <u>Ground Sites</u> d from pixel retrievals in 	North Pole MODIS	Whittaker if you have diffio n radius centered on t i <u>I TWP Darwin I SIRTA F</u> rrow I <u>Oliktok</u> I <u>Toolik I C</u>	ulty viewing the images the site. rance I <u>Chilbolton U.K</u> <u>OVE I Niamey Nigeria</u>

Satellite Imagery And Cloud Products Page

JOLATION GRO

LBTM - Computed from 3x3 1/3 ° regions centered on the site.

MASA LANGLEY CLOUD AND RADIATION RESEARCH

Data available digitally & graphically!

ARM

eyes

ATReC 2003

Future

Blend GEO & polar-orbiting satellite data to hourly global equal-area grid

- add: INSAT; Himiwari-8 & GOES-R (better time, space, & spectral res) MODIS & VIIRS in polar areas
- retain: hi-res regional grids

• We hope to continue improving algorithms & work with users to optimize products (funding always an issue, not a NASA priority)

- display improvements, especially 3-D
- nowcasting => *icing, overshooting tops*
 - HIWC diagnoses from satellite (uses Darwin & other campaign data)
- NWP & Icing model assimilation: work on all time and space scales
 - global, continental, and regional

Satellite Products for Icing Analyses and Forecasts

William L. Smith Jr., Patrick Minnis NASA Langley Research Center Hampton, VA. USA

Doug Spangenberg, Cecilia Fleeger, Rabindra Palikonda SSAI, Inc. Hampton, VA. USA

In-Flight Icing Users Technical Interchange Meeting (TIM) Washington D.C. 25-26 February, 2015

- Nowcasting & forecasting clouds and their impacts (e.g. icing) require accurate observations
- A major barrier to accurately predicting clouds & their impacts with numerical models is poor initialization (few/no cloud obs assimilated)
- Satellites observe clouds with high spatial and temporal resolution with sensitivity (higher during daylight) to conditions in which icing occurs
- Satellite cloud retrievals can improve icing diagnoses and forecasts in the following ways:
 - 1. Used directly to diagnose icing potential
 - 2. As input into other nowcasting systems, e.g. CIP
 - 3. As input into weather forecast models and other icing forecasting systems (improved cloud initialization)

The COMET Program

Satellites observe icing conditions

Cloud property retrievals provide quantitative information on the location for SLW in the atmosphere and on the droplet size distribution (icing potential)

SLW in cloud tops observed directly (lower level clouds)

- Cloud Top Phase, Temperature = SLW
- Effective radius: R_e = f(N(r))
- Liquid Water Path: LWP = f(LWC)

Ice over water clouds, need to infer embedded icing

- Exploit multilayer techniques (SLW stratus below Cirrus)
- For deep ice over water clouds, vertical structure important.
 Satellite retrievals can be used to constrain the problem during the daytime but other information also needed

GOALS

- Provide solutions for the full range of cloud conditions where icing is found
 - 1. Low cloud algorithm (Low, liquid topped clouds)
 - 2. Multi-layer algorithm (cirrus over stratus)
 - 3. Thick ice over water cloud algorithm (i.e. winter storms and convection)
- **Primary Inputs:** Satellite cloud retrievals (available globally, over data sparse areas, and with high spatial and temporal resolution)
- Product outputs: icing probability, potential intensity, expected altitude range
- Future work: blend in other realtime information when/where available (e.g. radar, ceilometer, thermodynamic profiles over CONUS)

1. Low Cloud Algorithm

- Cloud top phase and temperature (Tcld) identify SLW
- Satellite LWP and R_e correlated with icing PIREPS to develop relationships
- Larger values of LWP, R_e correspond with higher probability and more intense icing
- Algorithm tuned to maximize both POD (light) and POD (MOG)
- Recently added heavy icing category based on large Re

2. Multilayer algorithm (cirrus over stratus)

- Derive lower level Tcld, LWP (F.-L. Chang technique) and apply low cloud icing algorithm
- Recently updated and not yet validated

3. Thick ice over water cloud algorithm

Employs a cloud water content profiling technique (fully constrained with satellite cloud retrievals) to estimate the embedded supercooled LWC(z) which is then used to infer the icing potential

To develop and test, we use cloud properties and information from:

- NASA ATRAIN data: MODIS (satellite imager) flying in formation with the CloudSat cloud radar and the CALIPSO cloud lidar
- DOE ARM data: Cloud retrievals from ground-based cloud radar, lidar and microwave radiometer data co-located with GOES satellite cloud retrievals
- NOAA RUC/RAP cloud analyses
- Icing PIREPS for validation

NASA +

NASA LaRC Satellite Icing Algorithms

3. Thick ice over water cloud algorithm (Primary Elements)

Satellite Cloud Retrievals (T_{top}, TWP, Z_{top}, Z_{base}) define cloud type and constrain icing estimates. Cloud vertical structure is assessed *apriori* and climatologically as function of 50+ cloud types (using ARM, ATRAIN, RUC/RAP data) and stored in lookup tables. These include:

- Probabilities for cloud in the vertical profile, Pcld(z)
- Probabilities for SLW, Pslw(z); Picing = Pcld*Pslw
- Guidance on the vertical distribution of total cloud water, TWC(z)
- Guidance for partitioning liquid from ice: TWC(z)=IWC(z)+LWC(z)
- Guidance to map LWC to icing intensity: Politovitch (2003) air foil study
- *Picing* thresholds developed from correlations with PIREPS for estimating icing altitude boundaries (function of cloud type)

Example of current satellite icing product

Satellite method provides early warning and improved resolution of the icing threat not captured in current forecasting techniques and reduces overwarning.

GOES Icing Potential

GOES Icing Layer Top Altitude

3-D Icing Potential

Feb 26, 2013 (1745 UTC)

Single-layer algorithm

Verification with PIREPS Icing Layer Altitude

Icing layer top altitude: PSLW thresholds (cloud type dep.) tuned with PIREPS Icing layer base altitude: Cloud base or freezing level

Derived icing altitude boundaries capture most icing PIREPS found in ice and liquid topped clouds

Icing Potential Verification

Jan – Mar, 2013 (USA)

Satellite icing assessed in 20-km radius region at PIREP

Icing Detection

Satellite Method	Ν	PODY	Hit Rate
OVC Liquid Clouds	5759	99%	90%
OVC Ice Clouds	2713	98%	83%
All OVC Regions	11851	99%	88%

Icing detection beneath ice clouds is almost as accurate as that for unobscured low-level liquid clouds

Icing Intensity also has skill

Source	Ν	PODL	PODM	Accuracy	Pirep %MOG	Sat
Liquid Clouds	5013	76%	66%	73%	27	36
Ice Clouds	2236	80%	47%	72%	26	27

Intensity accuracy similar for liquid and ice clouds. Too much MOG for low clouds(?)

Case studies used to evaluate heavy icing index

Icing condition not well forecasted by Alaska NWS

Water Droplet Effective Radius (um)

Heavy icing detected from GOES in

vicinity of aircraft incident

Heavy Icing Case Studies

Socata TBM-700 crash near Morristown, NJ Dec 20, 2011 (10am)

- All 5 on board were killed
- AWC icing AIRMET had been issued for area and a general icing advisory issued to Pilot by ATC
- Numerous severe icing reports from jetliners filed near the time of the crash
- Severe icing advisory not issued until 11am
- Satellite analysis indicates lots of potentially heavy icing in the area. Thin higher layer obscured heavy icing near crash site

PIREPS are currently the primary trigger for SVR icing advisories

Water Droplet Radius (um)

Satellite Icing Analysis

The COMET Program

Satellite method provides early warning for heavy icing

22 Feb 2013 (2015 UTC)

X – denotes severe icing PIREPs

Icing SIGMETs (red) – AIRMET images replaced by G–AIRMET chart created at 2355 UTC Fri 22 Feb 2013 SIGMETs expire at or before 0304z/23rd

Comments on Profiling Technique

• Provides information on cloud vertical structure that are fully constrained with NRT satellite retrievals at the resolution of the satellite imager

- Includes profiles of the probabilities for cloud and SLW, LWC and IWC profiles.
- Demonstrated for Cirrus (no icing threat) and deep SL ice over water clouds
- First estimates of IWP and LWP in mixed phase clouds from operational satellite, and unprecedented accuracies compared to other satellite techniques
- IWC/IWP estimates agree well with active sensor retrievals and in situ measurements over a wide range of cloud conditions
- Embedded LWP estimates agree well with microwave radiometer data and are also confirmed by pilot reports of icing conditions (**PIREPS are a valuable resource!**)
- Results indicate that weather forecast models (i.e. RUC/RAP) already produce realistic clouds in many respects but not at the right place and time – not surprising considering lack of cloud obs assimilated

• When applied to GEO data, the profiling technique can provide a 4D cloud hydrometeor analysis for up to two cloud layers which should be useful for other applications and assimilation into forecast models. Some assimilation work is underway for convection but not icing.

Summary

• Satellite cloud retrievals improve spatial and temporal resolution of clouds and icing conditions compared to traditional nowcasting/forecasting methods

• Further improvements possible with other channels on newer imagers (e.g. 1.6 and 2.2 $\,\mu m$ on GOES-R penetrate deeper into cloud and help over snow)

• CONUS icing products will be delivered to NWS aviation WFO's for evaluation and feedback late 2015/2016 (via GOES-R Proving Ground). All LaRC NRT products, including other domains, are available now from NASA and some at NCEP

• Potential path to operations exists and is being pursued to improve icing diagnoses. Forecasting and other domains besides GOES-R is another matter (not funded)

• Satellite retrievals are not perfect. Much more work is needed to better understand uncertainties, incorporate new channels, refine the methods, package these information most appropriately for users, and acquire feedback

NASA LaRC USA Icing Page

http://cloudsgate2.larc.nasa.gov

Aircraft Icing link on left

Recent Satellite Icing References

Smith, W. L., Jr., P. Minnis, C. Fleeger, D. Spangenberg, R. Palikonda, L. Nguyen, 2012: Determining the Flight Icing Threat to Aircraft with Single-Layer Cloud Parameters Derived from Operational Satellite Data. *J. Appl. Meteor. Climatol.*, **51**, 1794–1810.

Smith, W. L., Jr., 2014: 4-D cloud properties from passive satellite and applications to resolve the flight icing threat to aircraft. PhD. Dissertation, University of Wisconsin-Madison, 165 pp.

In-Flight Icing Users Technical Interchange Meeting (TIM), Feb 25-26, 2015

Extra Slides

In-Flight Icing Users Technical Interchange Meeting (TIM), Feb 25-26, 2015

North American Domain

• Half-hourly analyses from GOES-East and GOES-West

Icing Potential

1715 UTC, 25 Feb 2014 Cloud-top Altitude (kft, AGL)

- Data pushed to NCEP
 - assimilated in Rapid Refresh (RAP) NWP model
 - Available to anyone with access to NCEP input products

Satellite Icing Algorithms

(1) Low cloud algorithm (SLW clouds)

- Cloud top phase, temperature identify SLW directly
- Match satellite retrievals of SLWP and R_e with PIREPS to develop relationships to icing threat
- LWP scaled to layer above freezing level (SLWP)

Smith et al. 2012 (JAMC)

Icing Intensity

SLWP Thresholds developed to separate light from MOG intensities

SURFACE	SLWP (g/m²)
All	405
Snow	475
No Snow	379

Thick Ice Over Water Cloud Algorithm

Primary elements:

- TWP parameterization (guidance from ground-based sensors)
 - Satellite retrieved IWP ≠ TWP or IWP for these clouds
 - IWP retrieval assumptions are violated: (not all ice, $Re(z) \neq const$)
- Climatological cloud type dependent functions (stored as lookup tables) that describe cloud vertical structure:
 - 1. the probability for cloud in vertical profile relative to the satellite-derived cloud boundaries (guidance from CloudSat+CALIPSO)
 - 2. typical vertical distributions of total cloud mass (i.e. derive TWC(z) from TWP) (from CloudSat+CALIPSO and RUC/RAP cloud analyses)
 - 3. The probability for liquid in the vertical profile (from RUC/RAP)
 - Guidance on liquid and ice partitioning to estimate IWC(z) and LWC(z) from TWC (z) (from RUC/RAP)
 - 5. Method to map LWC(z) to icing intensity at levels with T<0°C (air foil modeling study, Politovitch (2003)
 - 6. Consolidate for users: output max icing probability and intensity for the layer along with icing layer altitude boundaries

In-Flight Icing Users Technical Interchange Meeting (TIM), Feb 25-26, 2015

Vertical Structure: Cloud Probability

Cloud probability vertical distribution functions, Pcld(z), relative to imager cloud boundaries and as a function of cloud type.

NASA

- CloudSat/CALIPSO ground-truth
- SL only, ML could reduce errors Retrieved cloud boundaries pretty good but errors are a function of cloud type
- Cloud probabilities higher for optically thick clouds (vs thin)
- Cloud probabilities higher for cold (high) clouds than mid level (overlap problem) and low clouds (geometrically thin so errors magnified)

Could be used to improve CTH assimilation in model analyses (cloud building logic)

Thick Ice Over Water Cloud Algorithm

TWP parameterization:

 Based on correlations between GOES cloud retrievals (COD, R_e) and ARM Microbase product (Radar/MWR retrievals) at SGP

TWP nearly twice as large as the standard satellite retrieval of IWP for optically thick ice over water clouds

In-Flight Icing Users Technical Interchange Meeting (TIM), Feb 25-26, 2015

Thick Ice Over Water Cloud Algorithm

Normalized TWC Profiles, Hybrid (RUC + CloudSat/CALIPSO)

50+ cloud types defined by TWP, T_t ; Ice-topped clouds with COT > 10

Used to estimate TWC(z) from TWP (pixel level)

₽

Thick Ice Over Water Cloud Algorithm

SLW Probability and Speciation (Thompson microphysics) Climatological, function of T for lots of cloud types

Used to define icing layer boundaries and derive IWC(z), LWC(z) from TWC(z)

In-Flight Icing Users Technical Interchange Meeting (TIM), Feb 25-26, 2015

Example icing retrieval for two ice over water clouds

Cloud 1: COD=50 Cloud 2: COD=100

Parameter	Source	Cloud 1	Cloud 2
COD	VISST	50	100
CER (µm)	VISST	50	50
IWP (gm ⁻²)	VISST	1500	3000
TWP (gm ^{-∠})	parameterization	2212	5004
LWP (gm ^{-⊥})	parameterization	321	679
LWP (gm ⁻²)	Profile method	200	362
CTH (kft)	VISST	35.4	35.4
CBH (kft)	VISST	8.9	5.9
Zfrz (kft)	RAOB	3.9	3.9
ITH (kft)	Profile method	17.5	19.0
IBH (kft)	Profile method	8.9	5.9
ing Intensity Index (max)	Profile method	3	5
Icing Probability (max)	Profile method	0.63	0.9
FIT Intensity Index	Profile method	Light	MOG
FIT Probability Index	Profile method	Medium	High

Max Picing, intensity in vertical profile used to define icing potential for layer PCLD (b) -2) 32 28

24

4

0 1 2 3

) (d

Icing Intensity

cloud 2

(c)

PSLW

(a)

SLWC (gm⁻²)

LWP Validation

Relationship between COD and the LWP derived from GOES using the profiling technique (with RUC liquid/ice relationships) agrees with the relationship found between GOES and ARM MWR data

Suggests that the RUC/RAP (Thompson microphysics) cloud phase partitioning is good and that the satellite profiling technique is inferring the right amount of liquid water

IWP

(g/m²)

Imager IWC/IWP retrievals using profiling method agree well with CloudSat/CALIPSO

Monthly averages: April 2010 (CONUS)

	COD BIN	CALIPSO+ CloudSat	MODIS	BIAS	Ν
	10-20	0.051	0.047	-8%	5083
	20-40	0.087	0.083	-5%	4149
(g/m°)	40-80	0.154	0.161	5%	2635
	80-150	0.297	0.325	9%	730
	150	0.568	0.480	-15%	965
	ALL	0.141	0.143	1%	13562

Assessed at altitudes above -20C level

COD BIN	CALIPSO+ CloudSat	MODI S	BIAS	N
10-20	191	169	-12%	5083
20-40	333	324	-3%	4149
40-80	668	767	15%	2635
80-150	1231	1507	22%	730
150	2549	2688	5%	965
ALL	551	583	6%	13562

Imager IWC retrievals using profiling method agree well with in-situ aircraft data

