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Why should the wind energy industry care about mesoscale-microscale coupling?

Classic interpretation: An engineering problem

Turbines are designed for this... but operate in this...

‘\‘ This is also an atmospheric science problem /
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Moist area near surface capped by

marine inversion just above Vertical velocities in wake mix air,
turbine rotors forming cloud, plumes, waves

Image from Horns Rev Wind Farm in the North Sea showing turbine wakes.
Mesoscale and microscale processes interact. Mesoscale weather and environmental

drivers are critical to a full understanding and control of wind plant phenomena.
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Most general MMC approach: online via successive mesh refinement

Multiscale WRF simulation, DJ Wiersema et al (LLNL, UC Berkeley)
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MMC can be achieved many ways: | ..ol wind speed =21
1) Online Coupling: Grid nesting within one model, as shown above
2) Offline Coupling: Use of separate mesoscale and microscale simulation codes
a) Mesoscale data used at CFD model lateral boundaries
b) Mesoscale information used internally within LES/CFD codes (idealized setups)
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MMC can capture downscaling of a frontal passage to the wind plant environment

z ;'"h -~ Stochastic Cell Perturbation Method,
S /— . D Munoz-Esparza et al (NCAR, LANL,
s~ —— LLNL..)

LES nested within mesoscale. Turbulence can be accelerated
Turbulence develops slowly by modifying the inflow

6 21 November 2013, 16:00:00 UTC
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Online coupled multiscale WRF simulation using
actuator disks in nested LES domain, RS Arthur 4
et al (LLNL, NCAR, ...)

y [km]
w

What is required
to Make MMC |
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MMC challenges: Turbulence generation and the “Terra Incognita”

Turbulence Energy Spectrum, J Wyngaard, 2004
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3DPBL Scheme :

Artificial Intelligence (Al) approaches to improving MMC:
» Surface Layer modeling (D Gagne et al, NCAR)
» Atmospheric downscaling (R King, NREL)
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MMC challenge: Improved surface layer models and integration with Al

Simulations by N Patton (NCAR)

Atmospheric Characteristics for
Design Criteria (AC,DC):

Combine high-fidelity models (MMC,
Turbine, ...) with Al to a) discover
relationships between environmental

t ) (atmosphere, terrain, wave) inputs and
8 <> /~”  machine response (power, loads), and

Sle : o :
" ._% b) improve lower-fidelity design codes.
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Artificial Intelligence (Al) approaches to improving MMC:
» Surface Layer modeling (D Gagne et al, NCAR)
Atmospheric downscaling (R King, NREL)
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MMC Challenge: Complex terrain
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MMC Challenge: Offshore
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Moist area near surface capped by mixing
marine inversion just above Vertical velocities in wake mix air, rk M4 B

turbine rotors forming cloud, plumes, waves from N. Kelley (NREL)

Multiple atmospheric science challenges in marine
environments. Then there is the actual water ...
and giant, floating turbines ...

! ke Rotation
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MMC Goal: Accurate multiscale simulations/optimization in complex environments
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1. What are we Wake Steering, M Churchfield (NREL)

overlooking?

2. What are your
highest priorities?
Breakout Sessions
1. Details of
downscaling

2. Modeling for
turbines

3. Using Al in
a;tmospheric modeling
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