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Motivation: Surface Layer Parameterization in NWP

Transfer of energy between the ocean surface and atmosphere is 
driven by radiation and convection. 

The turbulent fluxes of momentum, sensible and latent heat occur through unresolved 
eddies which must be represented in numerical models through surface layer 
parameterizations.

Image Credit: 
Amy Caracappa-
Qubeck, WHOI
https://www.whoi.edu/o
ceanus/feature/evapora
tion/

https://www.whoi.edu/oceanus/feature/evaporation/


Motivation: Surface Layer Methods

Parameterizations of the Surface Layer use Monin-Obukhov Similarity Theory which depends on 
empirically defined stability functions ,𝝋𝑴 𝒂𝒏𝒅 𝝋𝑯,  (for momentum and heat) for the estimation of 
surface fluxes.
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x axis:Monin Obukhov Stability Parameter z/L where z is height and L is Monin Obukov Length
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GOAL: Improve Surface Flux Estimates Using Machine Learning

• Used weather data and flux measurements from the 
FINO1 tower and buoys to train machine learning 
models to estimate friction velocity 𝒖∗ and 
temperature scale 𝜽∗ directly (Avoiding explicit 
calculations using MO stability functions!)

• Compared results of Machine Learning estimates of 𝑢∗
and 𝜃∗ to explicitly calculated values using MO Theory

Note: We did not predict moisture scale q* since the FINO1 
dataset does not contain this information



Machine Learning Model Input and Output
Input Variables Heights
Sea Surface Temperature 0m
Wave Height 0m
Wave Direction 0m
Wave Period 0m
Potential Temperature 40m 
Relative Humidity 40m
Wind Speed 40 m
Wind Dir 40m
Wind U, V 40m
GHI 30m
Bulk Richardson Number 40m
Potential Temperature Gradient 40m,60m
Wind Speed Gradient 40m,60m
Angle Between Wind/Wave Dir 40m/0m
Solar Zenith 0 m
Solar Azimuth 0m
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Predictands Heights Flux Calc for NWP
friction velocity 𝑢∗ 40m momentum flux 𝜏 = 𝜌𝑢∗"

temperature scale 𝜃∗ 40m sensible heat flux= −𝜌𝑐#𝜃∗𝑢∗

Notes: Dataset had 20 min temporal resolution, buoy data had to be 
interpolated to 20min intervals, we had only 6 months of complete data 
samples



ML Algorithms: Random Forest and Neural Network

Images from http://cs231n.github.io/convolutional-networks/

Key Hyperparameters: 100 trees, 1024 leaf 
nodes/tree

Key Hyperparameters: Dense network with 2-3 
hidden layers,64 neurons, and tanh activation



Results of Estimating of Friction Velocity: Scatter Plots

X-axis: Observed 𝒖∗ Y-axis: Predicted or Calculated (MOST) 𝒖∗

RandomForest ANN Monin Obukhov

MAE: 0.06 MAE: 0.07 MAE: 0.26



Results of Estimating Temperature Scale:  Scatter Plots

X-axis: Observed 𝜽∗ Y-axis: Predicted or Calculated (MOST) 𝜽∗

RandomForest ANN Monin Obukhov

MAE: 0.023 MAE: 0.028 MAE: 0.044



Analysis of the RF Machine Learning Model
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Permutation Predictor Importance by Stability Regime
• Test data samples were separated by stability regime as determined by the Bulk Richardson Number
• Permutation Importance was determined for each predictor

- Predictor variables in the test dataset are permuted one at a time, then the model is applied to the test 
data with the scrambled predictor and and the change in prediction error is recorded

- The larger the error increase when randomly permuted, the more important the variable is

Bulk Richardson’s number distribution 

Regime Category Sizes 
Unstable (bulk Ri < .02):       4308
Neutral (bulk Ri in[-.02,02]):  1851
Stable   (bulk Ri > .02):          2647



Permutation Predictor Importance of RF by Stability Regime
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Temperature Scale: 
• Predictor importance spread over larger subset of predictors for all 

regimes 
• Top predictors in stable regime are dominated by wind variables
• Potential Temp top predictor for unstable regime, one of lowest for 

the stable regime
• Wave variables: height and direction are important, wave period 

shows greater importance for temp scale models.
• GHI at the low end of importance for all regimes in offshore models

Unstable Regime 

Neutral Regime 

Stable Regime 



Machine Learning with the NWP Model

• Surface Layer ML models have been incorporated 
within WRF for onshore surface layer case

• Wrote Fortran inference engines for random forest 
and dense neural networks

• Neural network produces smoother predictions 
than random forest and has more cooling at night, 
potentially due to larger moisture flux



Ongoing Challenges

Bridging Python ML 
Frameworks with Fortran and 
C Simulations
• ML frameworks like

Tensorflow can be called 
through poorly documented C 
API

• Cannot accept Fortran or 
CUDA arrays directly

• Need to build with same 
compiler as simulation, which 
can be daunting for 
Tensorflow

• Potential overhead issues
going from simulation to
framework

Offline vs Online Performance of 
ML Emulators
• ML emulators often fail to perform

as well within simulations as offline
• Error growth and feedbacks can 

cause instabilities and damping 
effects

• Time memory in ML is helpful but
may not be feasible in full 3D sims.

Dual Expertise and Training
• Successful implementation of ML 

in NWP requires experience in 
both areas

• Takes months/years of
experience to understand how to 
build these components from 
scratch

• Need more documentation and
training on both sides to engage
a larger community


