Details of Downscaling: "Turbulence Generation in Coupled Meso-to-Micro Simulations"

Dr. Domingo Muñoz-Esparza

Research Applications Laboratory

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

MMC-Sponsored Industry Workshop

LABORATOR

Atmospheric Challenges for the Wind Energy Industry October 20th 2020

Disparate-scale atmospheric modeling

Nesting LES within idealized mesoscale flow

NCAR RESEARCH APPLICATIONS

© 2019 University Corporation for Atmospheric Research

Challenge and existing methods

Challenge: to develop turbulence on a LES domain from a smooth mesoscale inflow

Existing methods

Precursor/Recycling

Stevens, Graham, Meneveau (Energy 2014)

Munter, Meneveau, Meyers (Boundary-Layer Meteo. 2016)

- Require "a priori" or "concurrent" simulation
- Data storage & computationally expensive
- Rely on scaling laws

Gaudet, Deng, Stauffer, Seaman (WRF

workshop 2012)

- Assume horizontal homogeneity

Synthetic turbulence

$$\begin{split} \tilde{u}_i &= \langle U_i \rangle + u'_i = \langle U_i \rangle + a_{im} \Psi_m \\ \Psi_m \left(t, x_j, x_k \right) &= \psi_m \left(t, x_j, x_k \right) \exp \left(-\frac{\pi \Delta t}{2T_L} \right) + \\ \psi_m \left(t - \Delta t, x_j, x_k \right) \left[1 - \exp \left(-\frac{\pi \Delta t}{T_L} \right) \right]^{1/2} \end{split}$$

Xie & Castro (Flow, Turbulence and Comb. 2009)

- Require "a priori" knowledge of turbulence
- Rely on simplified physics/assumptions
- Computationally expensive

Not easily applicable to heterogeneous ABLs subject to atmospheric stability effects

Mayor, Spalart, Tripoli (JAS 2002)

4

Mesoscale-LES transition: The Cell Perturbation method

"Cell Perturbation method": Stochastic potential temperature perturbations within LES domain (near inflow region) [Muñoz-Esparza et al. BLM2014, PoF2015, MWR2018]

- Generalized to account for stability effects
- Computationally inexpensive

Is "straight coupling" ever safe?

Convective Boundary Layer (CBL)

- CBL often requires long fetches
- Terrain helps locally, but surface disturbances still require long fetches to propagate throughout the ABL

Flow over Complex Terrain (Perdigão)

Chow et al. (Atmosphere 2019)

3.0

2.0

1.0

0.0

RESEARCH APPLICATIONS LABORATORY

6

Height AMSL

600

400

Grid x-coordinate [m] 1e4

The value of mesoscale-LES coupling

CWEX-13 field campaign (lowa)

RESEARCH APPLICATIONS LABORATORY

 $[ms^{-1}]$

NCAR

- WRF downscaling to LES with CP method (9/3/1km,90/30/8.2m)
 - Meso-LES coupling is able to realistically reproduce ABL features during diurnal cycle
 - Meso-LES does not only improve turbulence representation but also produces a more realistic sub-meso variability

UTC time [h]

© 2019 University Corporation for Atmospheric Research

FastEddy®: NCAR/RAL's GPU LES model

Accelerated-GPU computing for efficient meso-to-micro coupling

- Dynamical core for Atmospheric Boundary Layer flow simulations
- Potential to provide real-time forecasts at meter-scale
- Enables more efficient scientific exploration

Sauer & Muñoz-Esparza (2020) NCAR | RESEARCH APPLICATIONS LABORATORY

Mesoscale WRF to FastEddy downscaling example

Simulation of flow over Oklahoma city

- WRF to FastEddy downscaling with CP method for urban simulations (example of Oklahoma City)
- Urban scale validation with field data from OKC Joint Urban 2003 (winds, turbulence and dispersion)

 L_x , Ly, L_z = (2.0,3.0,1.2) km $\Delta x = \Delta y = 5 \text{ m}$ $\Delta z = 5 - 18 \text{ m} \text{ (stretched)}$

Horizontal cross section (z = 7.5 m)

Conclusions

- Downscaling from a mesoscale NWP model to microscale regime requires inflow turbulence generation in the nested LES domain
- The **Cell Perturbation (CP) method** provides an **efficient way to generate realistic turbulence** in atmospheric models [stability aware, computationally inexpensive]
- The lack of resolved turbulence degrades solution in LES models compared to mesoscale. Neither convection nor complex terrain features prevent from long development fetches to still exist (wasting computing resources).
- Meso-LES coupling improves not only turbulence representation but also submeso variability (intra-hour)
- GPU-LES models like FastEddy are more performant for meter-scale simulations than CPU-based codes, and provide an alternative for efficient meso-to-micro coupling

Thanks!!!

Dr. Domingo Muñoz-Esparza domingom@ucar.edu

