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               Complete description … 
 

Moncrieff, M.W. , C. Liu, and P. Bogenschutz, 2016: Simulation,  analytic models,  

and dynamical-based parameterization of organized moist convection coupled to 

tropical waves. J. Atmos. Sci., conditionally accepted 

• Organized tropical convection has coherent effects at large-to-global scales 

 

• Minimalist fundamental explanations sought 

Hypothesis  



Fraction of Tropical-Subtopical Rainfall from MCS from TRMM Database 

Tao & Moncrieff (2009)     



Organized Convection Parameterization 

 

1) EXPLICIT APPROACH: 

• Global Cloud-system Resolving Models with computational grid 1-10 km, 

e.g.,  MPAS,  NICAM (e.g., Miyakawa et al. 2012) 

 

• Superparameterization: Analysis of large-scale convective organization in 

Grabowski (2001) aquaplanet simulation identified key role of MCS-like 

dynamics represented by nonlinear analytic slantwise overturning models 

(Moncrieff 2004), encouraged investigation in a full GCM (CAM)  

 

2) DYNAMICAL - BASED APPROACH:   

• Multicloud Model Parametrization (Khouider & Majda 2006, 2007): 

Replaces  traditional convectiveparameterization, excellent success with 

MJO (NYU Courant Institute; NYU Abu Dhabi Institute) 

 

• Multiscale Coherent Structure Parameterization (MCSP): Nonlinear 

slantwise overturning model (MoncrIeff 2004; 2010) adds “missing 

organized convection” to traditional parameterization 



 Slantwise Overturning Model  
 

Multiscale Coherent Structure Parameterization (MCSP) 
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Upscale Evolution: Cumulonimbus to Mesoscale Circulation 
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Vertical Shear    Onset  Evolution of Cumulonimbus Ensemble 

Slantwise Overturning  
2nd Baroclinic ‘top-heavy’  

heating, missing from GCMs  

  



   Lagrangian-based Steady Slantwise  Overturning Model 

 
3 Sources  of Energy:  Potential,  Kinetic, Work done by Pressure Gradient 
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Key approximation valid across scales (i.e., self-similarity):  

Convective heating is proportional to vertical Velocity 

F: Buoyancy measured along trajectories 

G: Environmental shear 



2nd Baroclinic Organized Momentum Transport 
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Direction 
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Momentum Transport  Parameterization 
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1st &  2nd Baroclinic Modes of Convective Heating 

𝑄𝑚 (p, t) = 𝑄𝑐 p, t [𝛼1sin π 𝛼
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Eastward Propagating MJO  &  Embedded Westward 

Propagating Meso-Synoptic Systems  

Nakazawa (1988) 

Eastward 

Propagating 

Cloud 

Envelopes 

  

MJOs 

 (A, B,C,D) 

Westward 

Propagating 

Meso-synoptic 

Features 

(C) 

A 

B 

C 

D 



 

Objective: Investigate the large-scale effects of two key  

elements of MCS-type  convective organization 

 

             i) 2nd  baroclinic ‘top-heavy’convective  heating 

            ii) 2nd baroclinic convective momentum transport  

 

• 10-year CAM6  integrations, years 2-10 analyzed 

 

 

  

 

 

 

 



                CAM6  Control  

Precipitation Rate (15S -15N)  

MCSP: 2nd Baroclinic Heating  MCSP: 2nd Baroclinic Heating & 
 Momentum  Transport (𝜶𝟑 = 1) 

MCSP: 2nd  Baroclinic Heating & 
Momentum Transport  (𝜶𝟑 = 5)  



Zonal Wind at 200 hPa (15S – 15N) 

CAM6 Control 

MCSP: 2nd  Baroclinic  Momentum Transport ( 𝜶𝟑 = 1 ) MCSP: 2nd Baroclinic  Momentum  Transport (𝜶𝟑 = 5)   



Zonal Wind at 850hPa: Rossby-Haurwitz Waves (15S-15N)    

CAM6 Control 

MCSP: 2nd Baroclinic Momentum  Transport (𝜶𝟑 = 1) MCSP: 2nd Baroclinic Momentum Transport  (𝜶𝟑 = 5)  



Precipitation ‘Amplitude’ 

      CAM6 Control 

        MCSP: 2nd Baroclinic Heating & Momentum Transport  (𝜶𝟑  = 1)          MCSP: 2nd Baroclinic Heating 



Global Precipitation Rate 

MCSP: 2nd 
Baroclinic 
Heating  

CAM6 Control 

MCSP –  CAM6 



Global Precipitation Rate 

MCSP:  
2nd Baroclinic  
Momentum 

Transport 
𝜶𝟑 = 1 

CAM6  
Control 

MCSP – CAM6 



Cumulative Precipitation  Pattern 

MCSP 

CAM6 

MCSP – CAM6 

MCSP: 2nd Baroclinic Momentum Transport (𝜶𝟑 =1) MCSP: 2nd  Baroclinic Heating  
  



Convective Heating Rate Proportional to Vertical Velocity  
(DYNAMO Field Campaign) 

Oh et al. (2015) 



 

Model Development Strategy 
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Summary  

• Multiscale Coherent Structure Parameterization (MCSP), with Slantwise 
Overturning as the transport module, efficiently adds organized convection to 
contemporary convective parameterization 

 

• Proof of hypothesis: The existence of large-scale coherent  response to  2nd 
baroclinic heating & baroclinic momentum transport in Indian Ocean, Maritime 
Continent  and Tropical Western Pacific regions, i.e., hot spots of global 
teleconnection  

 

• Large-scale features  in   Indian Ocean, Tropical Pacific, SPCZ, ITCZ are 
consistent with the TRMM observations 

 

• The cross-scale self-similarity of squall lines, MCSs, tropical  superclusters and  
MJO stems from  convective  heating being proportional to the vertical  velocity  

 

• The multiscale coherent structure paradigm implies the existence of new scale-
selection mechanisms for organized convection at meso- and synoptic-scales  

 

• A few lines of code, MCSP is useable in  long climate simulations 

 

• Much more to be done, e.g.,  

         -- CAM6 

          -- Collaborate with multicloud parameterization research 

          -- Analysis of the 9 km ECMWF IFS 2nd Virtual Global Field Campaign (YOTC was 25 km) 
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