Digital City Inference and Generation

Daniel Aliaga, Liu He Department of Computer Science Purdue University

www.cs.purdue.edu/cgvlab

Levels

• Level 0

– LCZ and derivative work is doing great!

- Level 1
 - Start resolving individual buildings
 - Produce improve urban parameterization...
- Level 2
 - Develop novel and impact urban planning and design applications

Levels

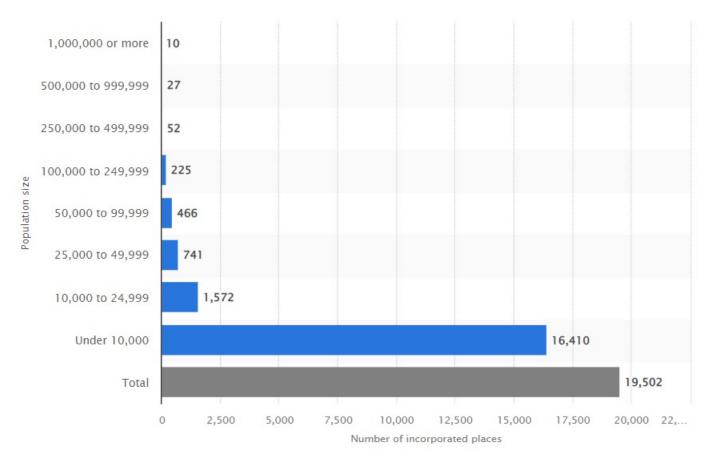
• Level 0

– LCZ and derivative work is doing great!

- Level 1
 - Start resolving individual buildings
 - Produce improve urban parameterization values...
- Level 2
 - Develop novel and impact urban planning and design applications

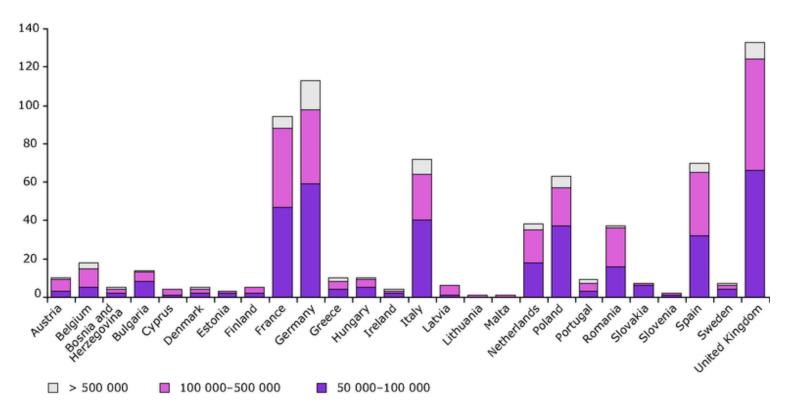
Cities

- Most people live in smaller cities
- US:



Cities

- Most people live in smaller cities
- Europe:



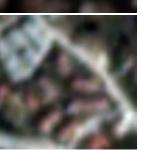
Problem: Missing Data

- >80% of the people living in cities are NOT in big metropolis
- Large metropolis are data rich but the cities where most people live are NOT data rich

Problem: Missing Data

Typical Data and Limitations

PlanetLabs

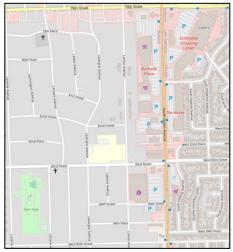


Limited details, missing data

\$\$\$, medium details, missing data

Worldview

OSM: crowd-sourced



High details, low coverage, missing data

High details, low coverage, missing data

(scarcity and missing data only exacerbated in small/med cities)

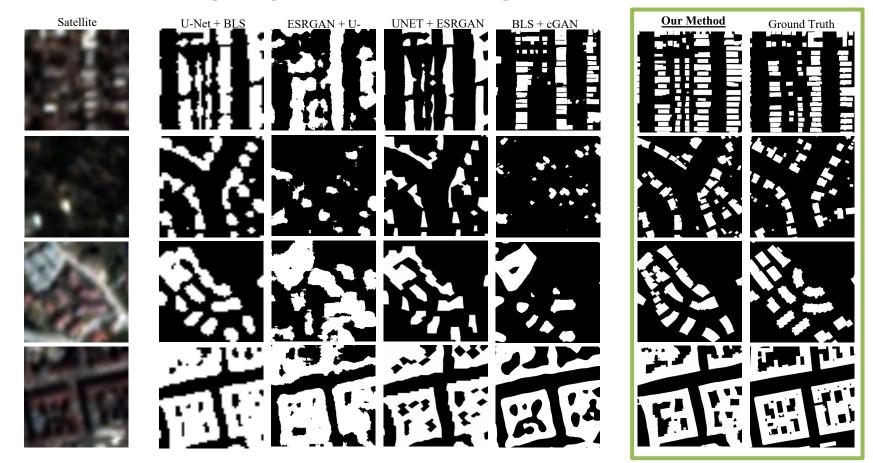
[He et al. 2022]

Solution: Digital Synthetic Cities

- Generate a "statistically similar" synthetic building and/or city
- Use whatever crowd-sourced and captured data is available (e.g., OSM, satellite-if-any)
 - It provides data that is incomplete but highly varied
- Then a deep generative network can learn the generalized "style" (i.e., distribution) from a noised large-scale dataset.
 - Does not produce a perfect reconstruction, but is of a similar distribution and thus suitable for many types of simulations
 - Output is fully synthetic and annotated so numerous <u>what-if scenarios</u> can easily be performed
 - i.e., "see more than we can see"

Solution (1 of N): Capture a subset and generate

• Satellite images: generate hi-res segmentation from low-res



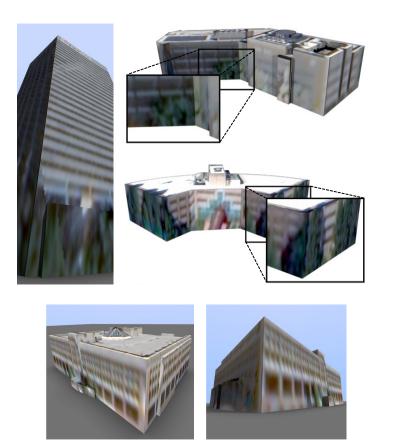
Solution (2 of N): Capture a subset and generate

Satellite images: generate cities from low-res

LandScan, JAXA, Segmentation Parcel Generator **Building Generator** Training Output: 3D Input: Procedural Heterogeneous Model Data

Solution (3 of N): Capture subset and generate

• Produce procedural facades from partial data



[Zhang et al. 2020a, Zhang et al. 2020b]

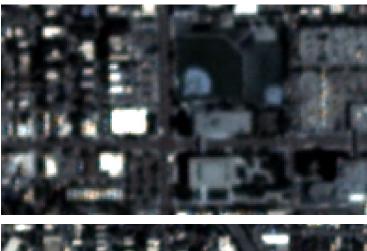
Solution (4 of N): Capture subset and generate

• From one ground image, produce entire bldg

Our Method

Solution (5 of N): Capture subset and generate

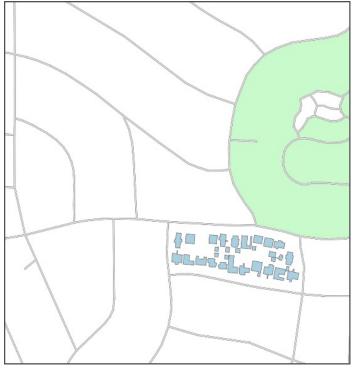
• Use spatio-temporal satellite images to localize individual trees



Our Method

Solution (6 of N): Capture subset and generate

• Generate city layouts, then compute UCPs



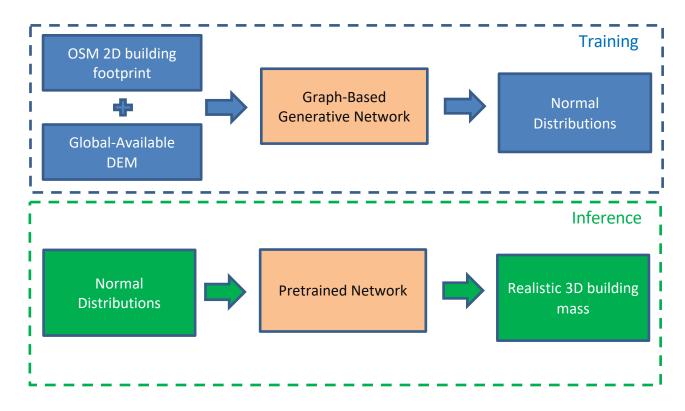
Input: Roads+Priors

Output: Building Mass

Deep Generative Layout Generation

Deep Generative Layout Generation

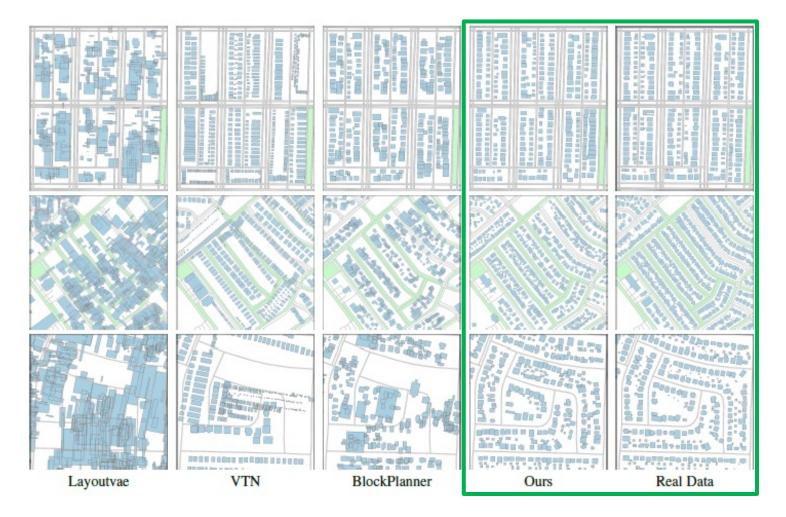
- We trained a generative network based on large-scale open resource dataset. The network is trained to represent all possible urban layout styles into a series of normal distributions.
- The well-pretrained model can synthetically generate realistic city blocks from normal distributions and marginal normal distributions indicated by user priors.



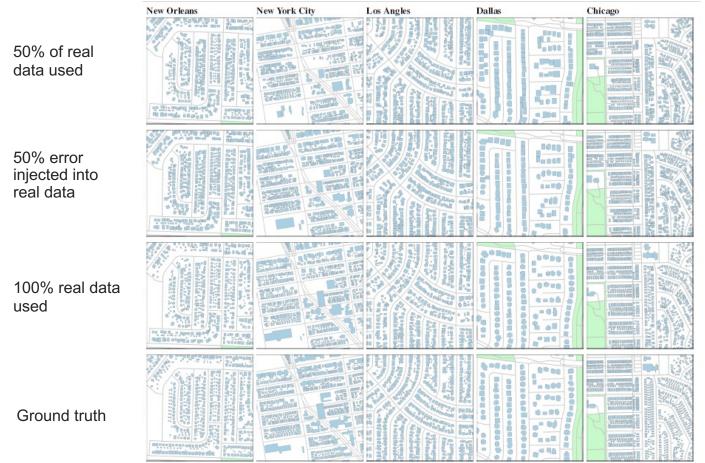
Deep Generative Layout Generation

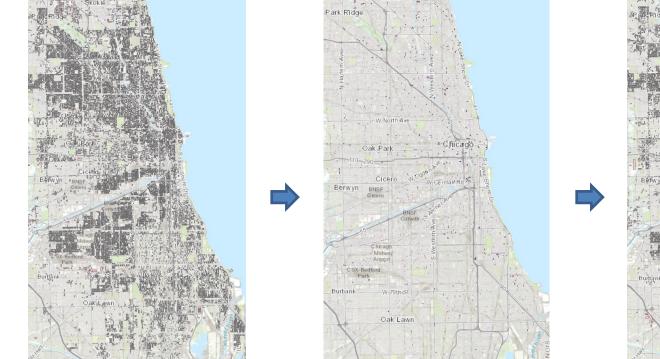
- Current status
 - Tested/trained for 28 North American cities
 - Height data is also produced (Austin collaboration)
 - 100k city blocks
 - 2M buildings

Experiment: Comparison



Experiment: Comparison





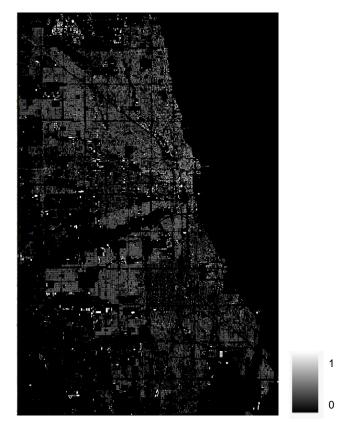
OSM shapefile

Only use x% (5% etc.)

Generate entire city

Plan area ratio

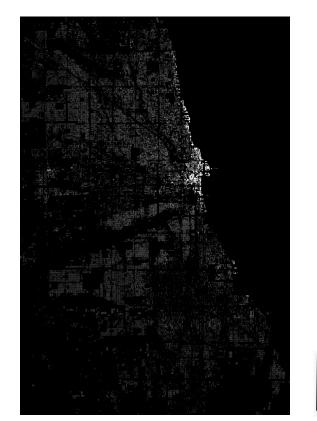
Synthetic Generation



Ground Truth from OSM

Building surface to plan area ratio

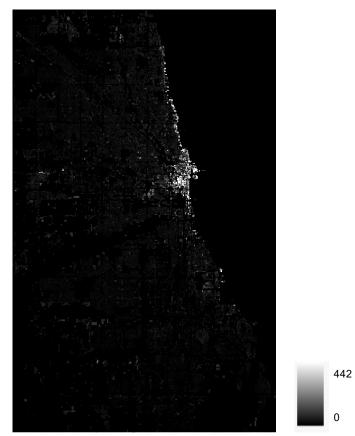
Synthetic Generation



Ground Truth from OSM

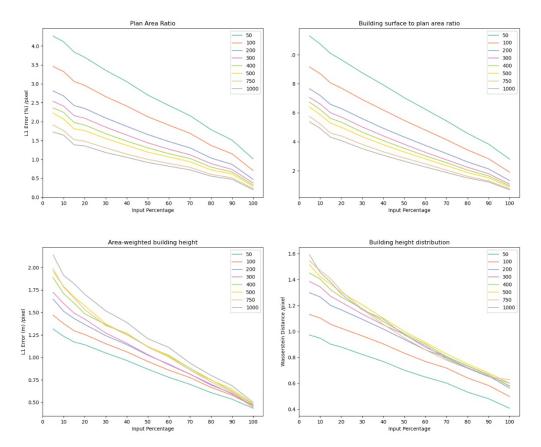
Area-weighted building height

Synthetic Generation



Ground Truth from OSM

L1 error using 5-100% of data



- With only 5% input, we can generate the entire city in the accuracy of:
 - Plan area ratio: L1 error < 2m per pixel
 - Building surface to plan area ratio: L1 error < 11% per pixel
 - Area-weighted building height: L1 error < 2.1 m per pixel
 - Building height distribution: W-distance < 1.6 per pixel

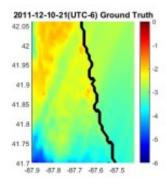
L2: Applications

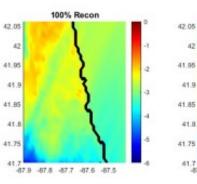
- WRF-Urban
 - As one application, we have run WRF-Urban forecasts and what-ifs for several cities:
 - Chicago, Indianapolis, Austin
- Flooding

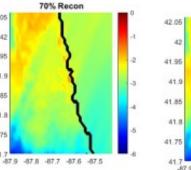
• Vehicular Traffic

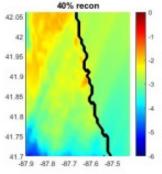
WRF-Urban Simulations

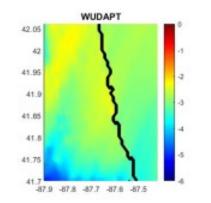
Surface Temperature





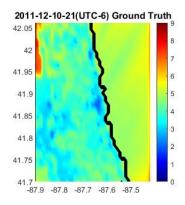


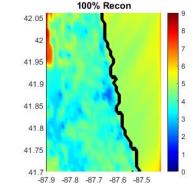


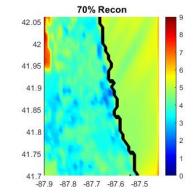


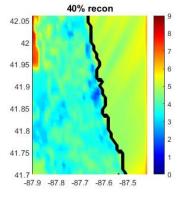
WRF-Urban Simulations

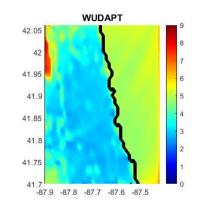
Wind Speed



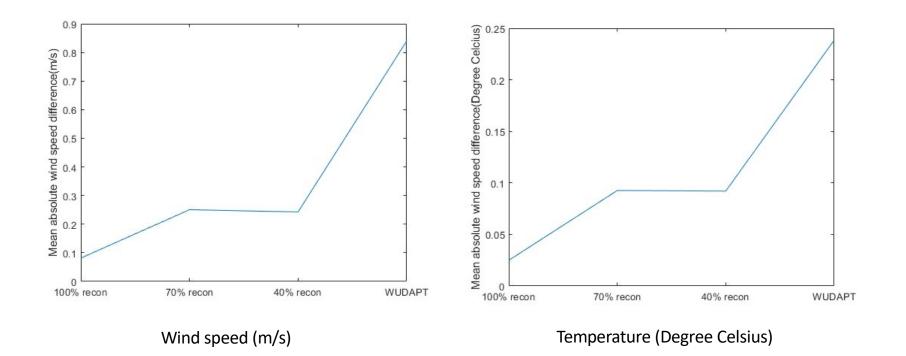








WRF-Urban Simulations



Other Applications: Urban Cloud Control

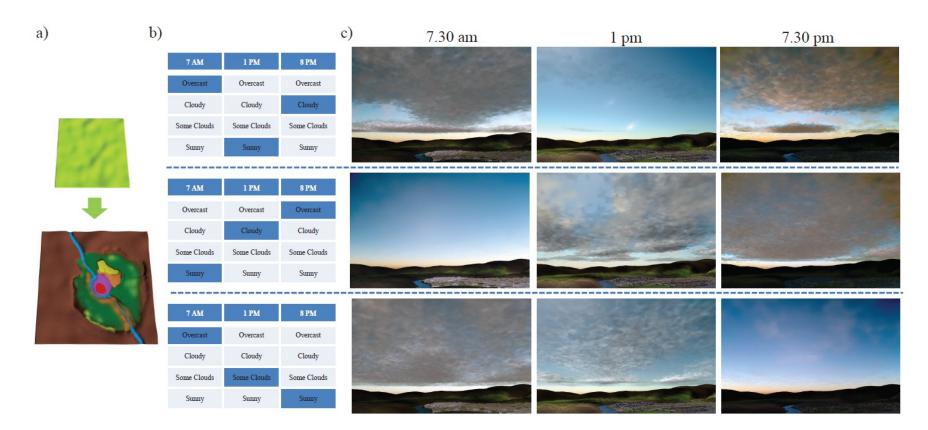


Fig. 10. **Inverse Cloud Design.** Three examples of cloud design. a) The user interactively draws a land use distribution; b) the user selects three different high-level behaviors of the weather; c) the system finds such weather and the weather sequence is visualized.

[Garcia-Dorado et al. 2017]

Other Applications: Temperature Mitigation

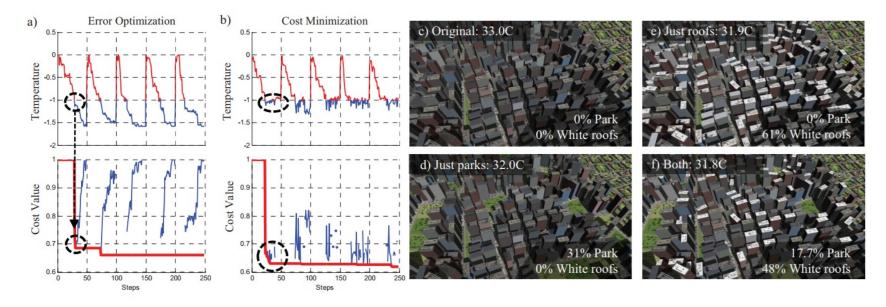
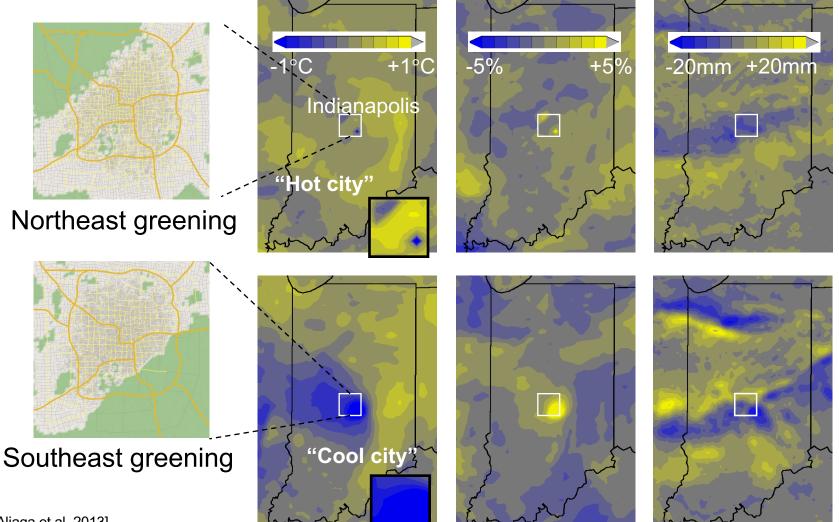
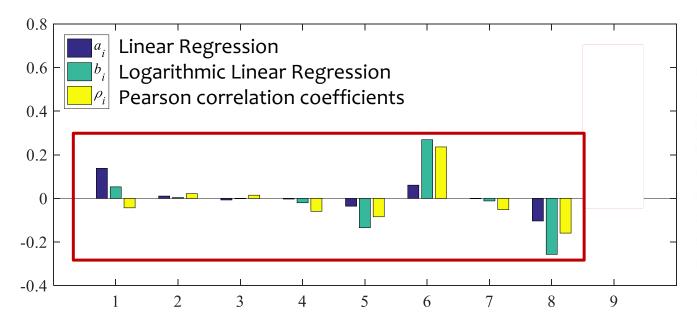


Fig. 12. **Inverse Temperature Design.** a-b) We show the behavior of the optimization for the solution e) of this figure: a) if our error optimization mode is used (i.e., optimize the temperature); b) if we use our cost minimization mode (i.e., temperature and cost optimization); c) the original model; d) altered model that achieves one degree reduction by introducing more parks; e) alternative model that achieves the same goal but uses white roofs to increase albedo; and f) a solution with both parks and white roofs (note the reduction in both).

Other Applications: Urban Greening Temperature Humidity Rainfall



Other Applications: Urban Flooding

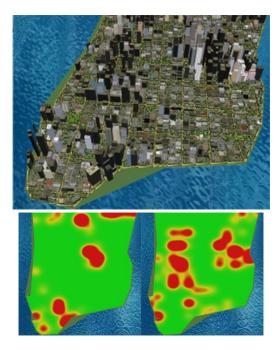


 x_1 : Average street length x_2 : Street orientation x_3 : Street curvature x_4 : Major street width x_5 : Minor street width x_6 : Mean parcel area x_7 : Building rear setback x_8 : Building side setback x_9 : Building coverage

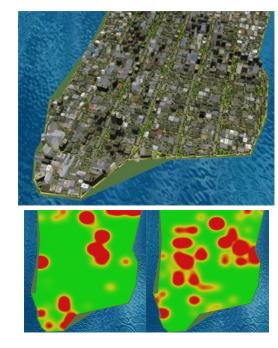
Other Applications: Urban Traffic

Solutions:

Travel Time: 50 min CO: 980gr 52 Lanes



Travel Time: 40 min CO: 622gr 16% Jobs 31% People 34 Lanes



Travel Time: 30 min CO: 484gr 29% Jobs 44% People 61 Lanes

Short Term Next Steps

- Target: all US cities with >100k people
 - About 320 cities
 - About 80,000 sq km
- Part A: Generate tree count/location for all
 - Needs 1M sq km of satellite
 - Suitable for ecosystem services and urban planning
 - Team formed; project underway...
- Part B: Generate layout (and UCP) for all
 - Suitable for urban planning
 - Team being formed...

Who funds this multi-disciplinary work?

It is not just us...

- Co-Investigators [co-Is on grants and/or co-authors on pubs]: Bedrich Benes (Purdue), Jason Ching (UNC), Songlin Fei (Purdue), Avi Kak (Purdue), Rajesh Kalyanam (Purdue), Ian Lindsay (Purdue), Gerald Mills (UC Dublin), Soraia Musse (PUCRS), Jennifer Neville (Purdue), Dev Niyogi (UT Austin), Manuel Oliveira (UFRGS), Nicholas Rauh (Purdue) Holly Rushmeier (Yale), Jacques Teller (U. Liege), Satish Ukkusuri (Purdue), Parker VanValkenburgh (Brown), Gunder Varinlioglu (MSFAU), Paul Waddell (UC Berkeley), Steve Wernke (Vanderbilt)
- Graduate Students [underlined are my advisee's]: Michel Abdul, <u>Daniel Bekins</u>, Sai Bhalachandran, <u>M. Bhatt</u>, <u>Ilke Demir</u>, <u>Ignacio Garcia-Dorado</u>, <u>Adnan Firoze</u>, <u>Liu He</u>, Ming Lei, <u>Tharindu Mathew</u>, <u>Chris May</u>, Ahmed Mustafa, <u>Gen Nishida</u>, Pratiman Patel, Paul Rosen, Paul Schmid, <u>A. Shehata</u>, Anamika Shreevastava, <u>Carlos Vanegas</u>, Innfarn Yoo, <u>Yi Xu</u>, <u>Zixun Yu</u>, <u>Xiaowei Zhang</u> (*and 5 more*)
- Undergraduate Students [produced papers or software kits]: Andy Feldcamp, Hareesh Gali, Aahash Ganga, Jerry Hsu, Robert Insley, Philip Jarvis, Yeong-Ouk Kim, Aaron Link (and 15 more)

www.cs.purdue.edu/homes/aliaga

Please see papers for more details! (or ask us)

Questions?

Application: Urban Cloud Control

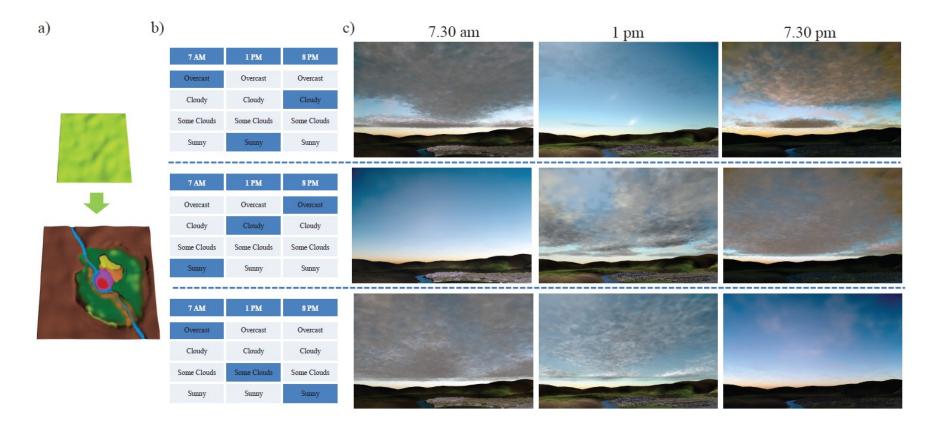


Fig. 10. **Inverse Cloud Design.** Three examples of cloud design. a) The user interactively draws a land use distribution; b) the user selects three different high-level behaviors of the weather; c) the system finds such weather and the weather sequence is visualized.

Application: Urban Temperature

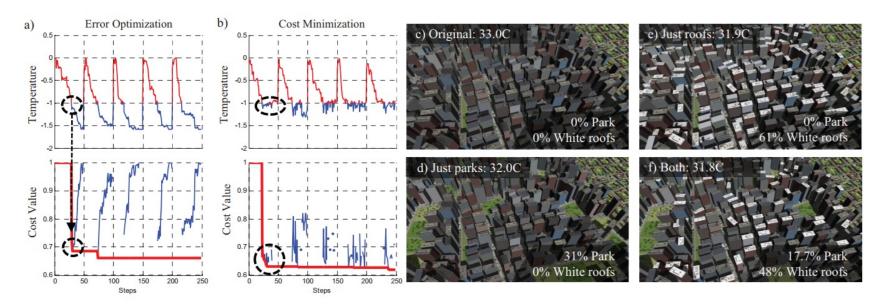
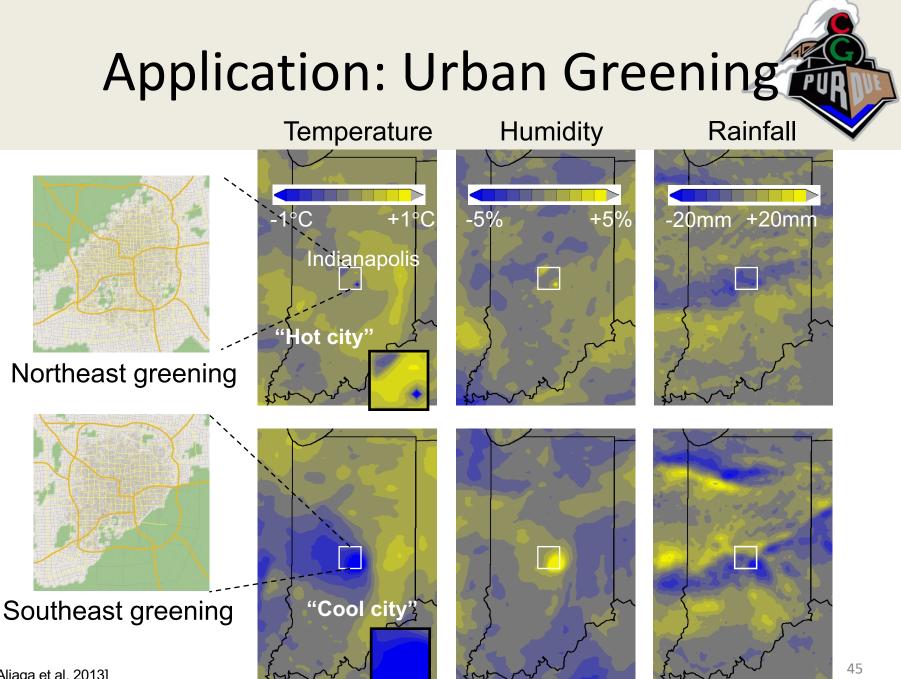
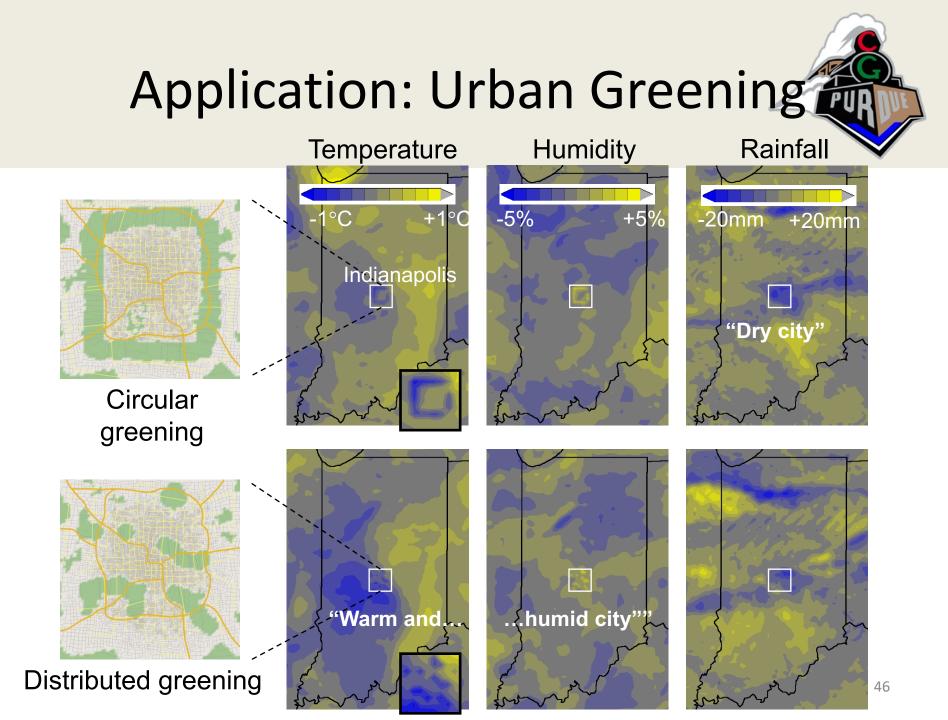
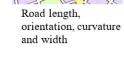


Fig. 12. **Inverse Temperature Design.** a-b) We show the behavior of the optimization for the solution e) of this figure: a) if our error optimization mode is used (i.e., optimize the temperature); b) if we use our cost minimization mode (i.e., temperature and cost optimization); c) the original model; d) altered model that achieves one degree reduction by introducing more parks; e) alternative model that achieves the same goal but uses white roofs to increase albedo; and f) a solution with both parks and white roofs (note the reduction in both).





Application: Urban Flooding PII

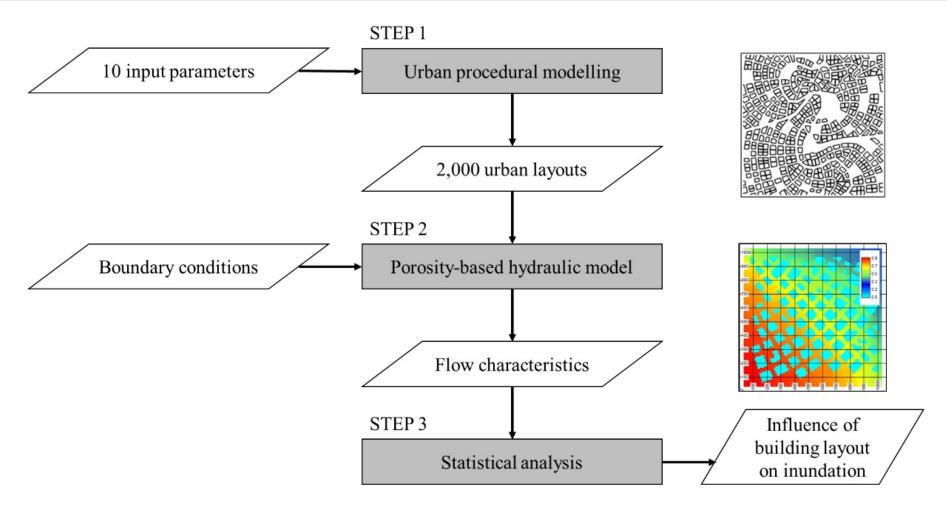


Parks ratio

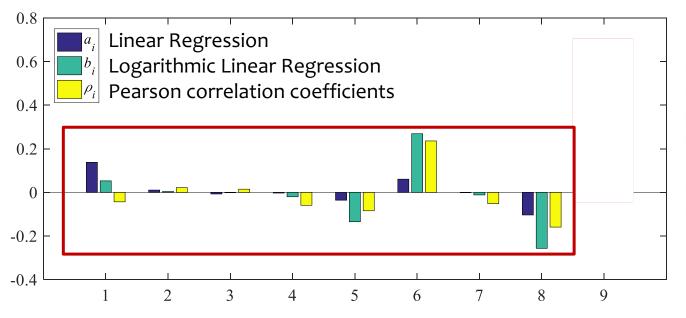
Parcel area

Number of floors

Application: Urban Flooding



Application: Urban Flooding



 x_1 : Average street length x_2 : Street orientation x_3 : Street curvature x_4 : Major street width x_5 : Minor street width x_6 : Mean parcel area x_7 : Building rear setback x_8 : Building side setback x_9 : Building coverage

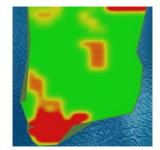
Application: Urban Traffic

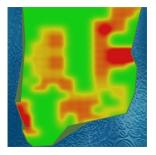
Application: Urban Traffic

Initial Simulation

Travel Time: 60min CO: 1012 gr

The user wants to optimize the city to 50, 40, and 30 min as maximum Travel Time

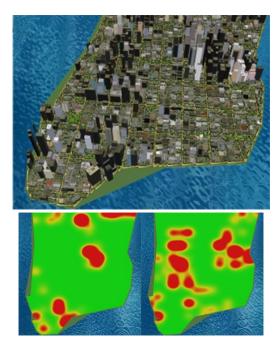




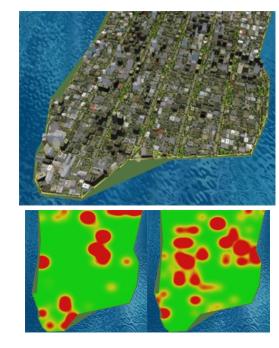
Application: Urban Traffic

Solutions:

Travel Time: 50 min CO: 980gr 52 Lanes

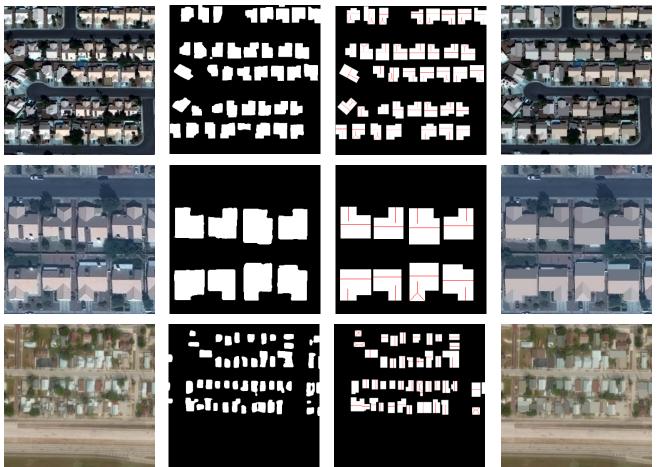


Travel Time: 40 min CO: 622gr 16% Jobs 31% People 34 Lanes



Travel Time: 30 min CO: 484gr 29% Jobs 44% People 61 Lanes

Satellite to Procedural Roofs ...to Solar Planning



(a) Input urban area

(b) Initial segmentation

(c) Our footprints and roof ridges

www.cs.purdue.edu/homes/aliaga

Please see papers for more details! (or ask me) aliaga@cs.purdue.edu

Questions?

City Population

 4000 cities with >100k population (contains roughly 30% of world population)

Cities are complex

