GEWEX Convection-Permitting Climate Modeling Workshop@NCAR, Boulder, CO, 6-8 Sep 2016

Resolution dependency of clouds and precipitation derived from 14-km- to sub-kilometer-mesh nonhydrostatic global simulations

Akira Noda

Japan Agency for Marine Earth Science and Technology

outline

- م What's NICAM
- Resolution dependency of
 - Cloud cover
 - Precipitation
 - Isolated deep convection (tornadic supercell) (ARPS result)

Global Cloud Resolving Model (NICAM)

Conventional GCM [[[]]] Clouds are parameterized from large-scale conditions

Cloud-Resolving GCM [] Clouds are computed from a microphysics scheme and dynamic and thermodynamic equations explicitly

Cloud cover

Δ

Cloud change due to global warming

- High cloud feedback in a warmer atmosphere has been still controversial (e.g., Ramanathan and Collins 1991; Lindzen et al. 2001; Ringer et al. 2006)
- Response of high clouds in global nonhydrostatic simulation without cumulus parameterization differs from conventional GCMs (Collins and Satoh 2009; Satoh et al. 2012; Tsushima et al. 2014).
- Why?
- This contrasting response of high
 clouds may arise from the different 30N
 treatment of cloud schemes or
 higher spatial resolution.

Noda et al. (2014, JCLI)

Cloud cover by ISCCP simulator

Noda et al. (2014, JCLI)

Cloud cover by ISCCP simulator

- 14km resolution data needs 10.2GB/day (restart data not included)
- → 110 TB for 30-yr data set
- \checkmark \rightarrow 220TB for present and future climate data set

Cloud size analysis

9

The number of high clouds decreases with radius in a power-law.

- The 14-km mesh model underestimates smaller clouds, compared to the satellite observation.
- But this negative bias is reduced in higher resolution model, such as 7-km mesh run.

Number of high clouds (GW-CTL) (a) \blacktriangleright In a warmer atmosphere, the numbers of high clouds increase in almost Global IR DTICT all radius bins both in 7-km and 14 km mesh robustly. \blacktriangleright The increase of high clouds contributes to the increase of LW CRF, leading to positive feedback (following slides) 100 1000 R7(GW-CTL) □ R14(GW-CTL) ■ 10 100 10 0 0.1 GW-Present 0.01 50 100 150 200 250 300 350 400 7-km mesh Radius (km) 400kn 0 14-km mesh

Joint-PDFs of CRF vs. Radius

 $\int_{0}^{\infty} \int_{0}^{\infty} F_{i}(r, y) dr dy = \text{mean of } i \text{ in } 30^{\circ} \text{ N} - 30^{\circ} \text{ S}$

- Positive correlation between LWCRF and cloud radius. LWCRF increases with radius.
- The change in smaller clouds greatly explain the net change of CRF. (The number of such smaller high clouds are much larger compared to bigger size high clouds)

Binned IWP and LWP per high cloud

- ➤ IWP decreases in every radius bin → cloud optical depth of a mean high cloud becomes thinner, leading to reduced LWCRF
- LWP changes to increase across 120 km radius.

Binned Cloud radiative forcing per high cloud

- Both LW and SW CRF
 becomes weaker in every
 radius bin.
- In particular, the
 weakening of LW CRF
 occurs more remarkably in
 larger clouds.

Diurnal cycle of Tropical Precipitation

Sensitivity of changes of cold and warm rain in global warming to model resolution

Noda et al. (2015,JMSJ)

Responses to global warming

Low-latitude precipi. increases both in 7km and 14km mesh models
 Resolution dependency in changes of cold and warm rain

- V In 14km mesh, warm rain decreases while cold rain increase, and the latter explains the increase of total precipi.
- \checkmark In 7km mesh, warm rain increases, which explains more than half of total increase,
 - ✓ suggesting roles of warm rain become more important in higher resolution models

Influences of horizontal resolution on isolated deep convection ~A case study of supercell storm~

Noda and Niino (2003,GRL)

Noda and Niino (2003,GRL)

Maximum vertical velocity (1km altitude over the domain)

Slight change of grid spacing (by 100m) can cause drastic changes in convection

Summary

- Global Cloud-Resolving Model: NICAM
- Resolution dependency
 - Cloud cover
 - د 14km and 7km resolution models show qualitatively similar results
 - د High cloud cover increases while low cloud cover decreases in both models under global warming
 - Increased high cloud cover is a consequence of the increased number of small scale (high-topped) clouds. Use of high resolution model is a key to evaluate cloud feedback in global warming more accurately

• Precipitation

- ی Diurnal cycle of tropical land precipitation becomes better with increasing resolution.
- \circ Quantitative behavior of land precipitation notably changes across Δ ~1km
- S Roles of precipitation by low-topped clouds are more important in a warmer world, and thus improving resolution is also important.
- Isolated convection (case study of supercell storm)
 - د Changes of grid spacing by 100m can alter behavior of supercell morphology drastically د

Experimental Design (Present climate simulation)

Initialization	NCEP Global analysis
Time Integration	1 year starting from 1 June 2004
SST	Slab mixed layer ocean model with 15m depth and 7day e-folding time, nudged to NOAA Weekly Reynolds SST
Horizontal resolution	7km
Vertical resolution	80m 🛛 2.9km (Stretched)
Cloud	One-moment, 6 categories (Tomita 2008) (cumulus parameterization not used)
Turbulence	Improved version of Mellor-Yamada Level 2 with subgrid-scale condensation (Nakanishi & Niino 2006; Noda et al. 2010) *partial cloudiness not considered
Surface turbulent flux	Bulk parameterization by Louis (1979)
Radiation	MSTRN-X (Sekiguchi and Nakajima 2008)
Land surface	MATSIRO (Takata et al. 2003)
CO2 concentration	348 ppm

27

Experimental Design (Global warming simulation

Initialization	NCEP Global analysis
Time Integration	1 year starting from 1 May 2004 (Time slice approach)
SST	Slab mixed layer ocean model with 15m depth and 7day e-folding time, nudged to [Present+Increase by CMIP3 ensemble]
Horizontal resolution	7km
Vertical resolution	80m 🛾 2.9km (Stretched)
Cloud	One-moment, 6 categories (Tomita 2008) (cumulus parameterization not used)
Turbulence	Improved version of Mellor-Yamada Level 2 with subgrid-scale condensation (Nakanishi & Niino 2006; Noda et al. 2010) *partial cloudiness not considered
Surface turbulent flux	Bulk parameterization by Louis (1979)
Radiation	MSTRN-X (Sekiguchi and Nakajima 2008)
Land surface	MATSIRO (Takata et al. 2003)
CO2 concentration	348 ppm

696 ppm (twiced homogeneously over the globe)

~~