### VextGEN

# Weather Technology in the Cockpit (WTIC) Program

**Turbulence Workshop Presentation** 

Date: September 3, 2014

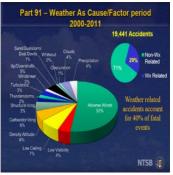






Federal Aviation Administration

#### Weather Technology in the Cockpit (WTIC)


#### **Program Overview**

.

|                                                                                                                                                                                                                                                                                                         | Program Overview                                                                                                                                                                                                                                                                                                          | Part 121/135 Research Tasks                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                         | <ul> <li>NextGen research program</li> <li>Portfolio of research projects</li> <li>Develops, verifies and validates requirements for standards</li> <li>Identifies safety risks and operational inefficiencies attributable to gaps of meteorological (MET) information in the cockpit and resolves those gaps</li> </ul> | <ul> <li>Recommend a Minimum Weather Service<br/>(MinWxSvc) to achieve WTIC Program<br/>objectives</li> <li>Minimum cockpit MET information</li> <li>Minimum performance parameters (i.e.,<br/>accuracy, latency, availability) of cockpit MET<br/>information</li> <li>Minimum rendering standards to enable<br/>correct and consistent interpretation</li> <li>Identify current and NextGen operational<br/>inefficiencies attributable to gaps of MET<br/>information in the cockpit</li> </ul> |
| Part 91 Research Tasks Recommend MWS to enhance safety Identify causal factors for GA Wx-related accident rate Identify shortfalls in pilot understanding and proper use of MET information and training to resolve those shortfalls Determine GA willingness to spend on equipage and services for MWS |                                                                                                                                                                                                                                                                                                                           | <ul> <li>Portfolio Overview</li> <li>Approximately 9 ongoing GA projects and 9 ongoing Part 121/135 projects</li> <li>Sample Part 121/135 projects <ul> <li>Eddy Dissipation Rate (EDR) uplink</li> <li>Wind Requirements Study</li> <li>Adverse Weather Alerting</li> </ul> </li> <li>Sample GA Projects <ul> <li>Mobile MET</li> <li>Accident causality assessments</li> <li>MET information rendering assessments</li> <li>Adverse Weather "alerting function(s)"</li> </ul> </li> </ul>        |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



Part 121/135 Research Tasks



NTSB Briefing Slide – Summer 2013 FPAW

trade studies (FY15)

prototype tool (FY15)

•

•

•

| Para | -Ter | Para la construcción de la constru<br>La construcción de la construcción de | - Alta | • |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|

#### WTIC Part 91 Projects

#### **Overview**

Plans

Develop rendering recommendations (FY16)

- Causality Assessments of • Wx Related Accidents Inadvertent flight into •
- Instrument Meteorological Conditions (IMC) gap analysis
- Shortfall analysis of current cockpit MET products
- Adverse weather alerting
- Mobile MET application MWS
- Probabilistic weather

#### **Recent Accomplishments**

- Developed a prototype tool and draft MWS Mobile MET application recommendations Demonstrated probabilistic information positive impact on GA separation from convection Investigated 319 VFR to IMC accidents, degraded visual over 75% Created weather indexing tool to support analyses (Wx accidents much higher rate of decision errors than other GA accidents) Developed use case scenarios for assessing weather alerts Identified gaps in weather product rendering and conspicuity of information Collaboration Assess benefits of candidate alerts and perform Work with NWS to ensure that cockpit weather needs are and understood, and eventually met by Continue to investigate options for incorporating either existing or new products probabilistic MET information in cockpits (FY15) Use the data/gaps we uncover and share strength and weaknesses of available weather information Develop weather factors risk matrix (FY14) Perform lab evaluation of Mobile MET application with NWS
  - Review accidents, incidents, NTSB recommendations and more to respond collaboratively and consistently



#### WTIC Part 121/135 Projects

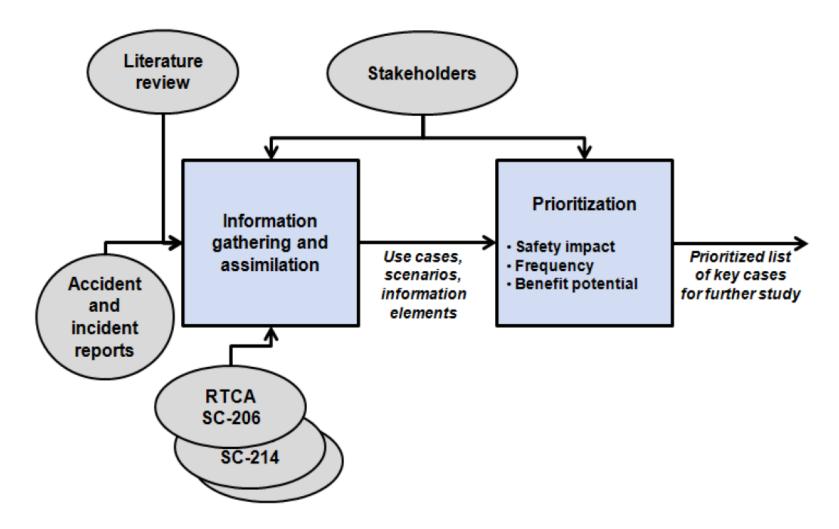
Т

#### **Overview**

Section States and Section Sec

| <text><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></text>                                                                                                                                                                                                                                                                    | <ul> <li>Running operational demonstration on cockpit<br/>display of turbulence information <ul> <li>Benefits to follow</li> </ul> </li> <li>Conducted studies to evaluate bandwidth<br/>constraints on downlink/uplink of MET<br/>information</li> <li>Study on the industry perspective to obtain<br/>idealistic view of weather in the cockpit from all<br/>aviation sectors</li> <li>Completed a WTIC Concept of Operations</li> <li>Evaluation of multiple flight displays of Corridor<br/>Integrated Weather System (CIWS) and<br/>Convective Weather Avoidance Model (CWAM)</li> </ul> |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plans                                                                                                                                                                                                                                                                                                                                                                                               | <b>Collaboration</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <ul> <li>Identify alert recommendation for MWS (FY16)</li> <li>Complete EDR technical transfer package (FY15)</li> <li>Provide trade studies on wind accuracy to support<br/>advanced NextGen concepts (FY15)</li> <li>Make recommendations for incorporating<br/>probabilistic weather in the Part 121/135 and Part 91<br/>MWS (FY18)</li> <li>Develop rendering recommendations (FY20)</li> </ul> | <ul> <li>Work with NWS to ensure that cockpit weather needs are and understood, and eventually met by either existing or new products</li> <li>Use the data/gaps we uncover and share strength and weaknesses of available weather information with NWS</li> <li>Review accidents, incidents, NTSB recommendations and more to respond collaboratively and consistently</li> </ul>                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |



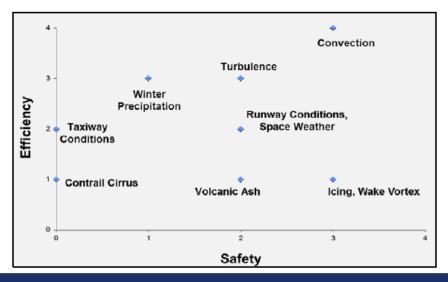

**Recent Accomplishments** 

### WTIC Part 121/135 Weather Alert Projects

- Two categories of adverse weather alerting functions being research by WTIC Program for inclusion in MinWxSvc
  - Tactical Alerting: function alerts pilot that an adverse weather condition is going to be encountered, not intended to assist in avoidance decisions
  - Strategic Alerting: function alerts pilot of meteorological (MET) information to be used to assist in efficient and safe adverse weather avoidance decision making

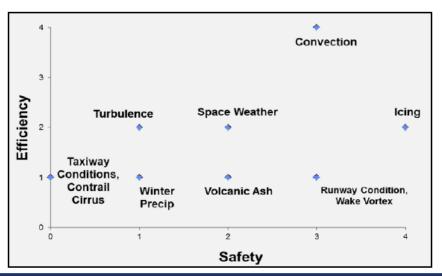


### **Use Case Prioritization**






## **MET Condition Prioritization**


#### Part 121

|                      | Frequency | Safety | Efficiency | Total |
|----------------------|-----------|--------|------------|-------|
| Convection           | 3         | 3      | 4          | 10    |
| Turbulence           | 4         | 2      | 3          | 9     |
| Winter Precipitation | 3         | 1      | 3          | 7     |
| Runway Conditions    | 2         | 2      | 2          | 6     |
| Wake Vortex          | 2         | 3      | 1          | 6     |
| lcing                | 2         | 3      | 1          | 6     |
| Volcanic Ash         | 1         | 2      | 1          | 4     |
| Taxiway Conditions   | 2         | 0      | 2          | 4     |
| Space Weather        | 0         | 2      | 2          | 4     |
| Contrail Cirrus      | 2         | 0      | 1          | 3     |



#### Part 91(k)/135

|                      | Frequency | Safety | Efficiency | Total |
|----------------------|-----------|--------|------------|-------|
| lcing                | 2         | 4      | 2          | 8     |
| Convection           | 1         | 3      | 4          | 8     |
| Runway Conditions    | 3         | 3      | 1          | 7     |
| Wake Vortex          | 2         | 3      | 1          | 6     |
| Turbulence           | 2         | 1      | 2          | 5     |
| Winter Precipitation | 3         | 1      | 1          | 5     |
| Space Weather        | 0         | 2      | 2          | 4     |
| Volcanic Ash         | 1         | 2      | 1          | 4     |
| Taxiway Conditions   | 2         | 0      | 1          | 3     |
| Contrail Cirrus      | 2         | 0      | 1          | 3     |





Federal Aviation Administration

### **MET Alerting Conditions**

| MET Alerting Condition | Description                                                      |  |
|------------------------|------------------------------------------------------------------|--|
| Convection             | Any convective induced phenomena such as turbulence,             |  |
|                        | lightning, microburst, icing, and hail.                          |  |
| Turbulence             | Any non-convective induced turbulence such as clear air          |  |
|                        | turbulence, mountain wave turbulence, and wind shear.            |  |
| Winter Precipitation   | Winter precipitation type such as snow, freezing rain, and ice   |  |
|                        | pellets, as well as the precipitation rate. A primary factor in  |  |
|                        | deicing holdover time calculation.                               |  |
| Runway Conditions      | Any runway surface condition such as snow, ice, braking          |  |
|                        | friction, surface wind. This category also includes ceiling and  |  |
|                        | runway visibility.                                               |  |
| Wake Vortex            | Any wind condition that would result in a wake vortex            |  |
|                        | persisting or encroaching on an approach or departure path.      |  |
| Icing                  | Any airframe or engine icing condition.                          |  |
| Volcanic Ash           | Any plume of volcanic ash that would interfere with safe         |  |
|                        | operations.                                                      |  |
| Space Weather          | Any radiation condition that would result in a loss of           |  |
|                        | navigational or communications capabilities.                     |  |
| Taxiway Conditions     | Any contamination on the taxiway such as snow or ice.            |  |
| Contrail Cirrus        | Any relative humidity condition that would result in persistent  |  |
|                        | contrail cirrus, which is a contributor to environmental impact. |  |



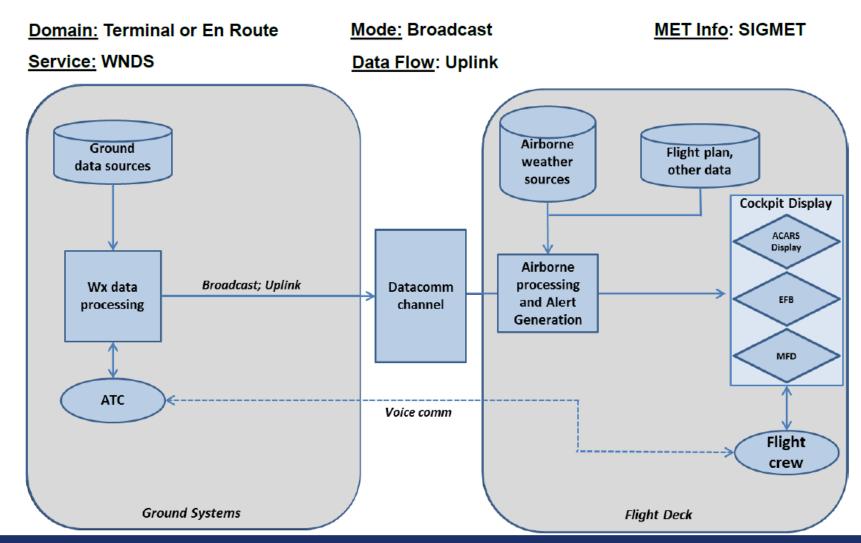
### **Alerting Benefit Categories**

#### **Safety**

- Turbulence Convective and Non-convective (injuries to flight attendants and passengers)
- Runway conditions
- Wake turbulence
- Icing
- Volcanic ash
- Space weather

#### **Efficiency**

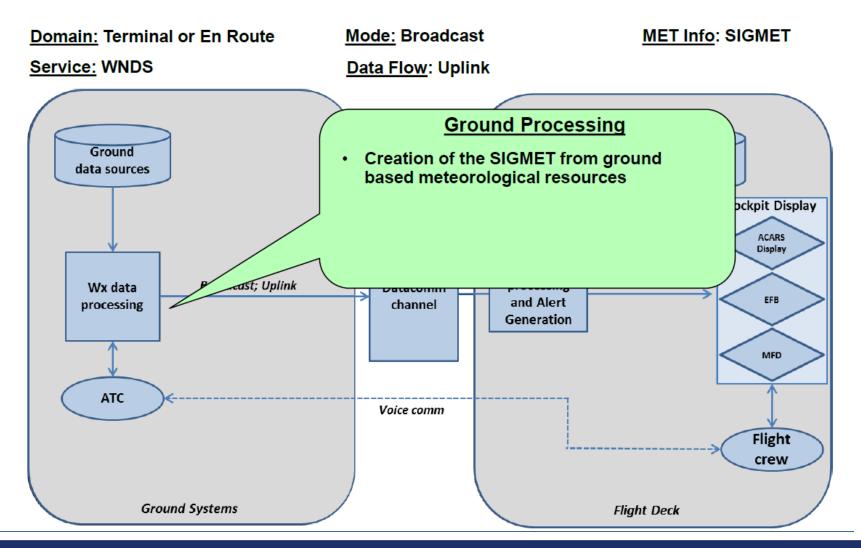
- Turbulence (frequency congestion)
- Convection
- Winter precipitation
- Runway conditions
- Taxiway conditions
- Space weather
- Contrail cirrus




# Example Efficiency Shortfalls to Resolve

- WTIC Concept of Operations
  - Lack of strategic weather information leads to reactive decision making and unpredictability in the NAS
  - Lack of information in the cockpit to support trajectory based operations
  - Excessive workload / voice communications due to pilot reports
- WTIC Industry Perspectives Report
  - Lack of common information between dispatch and the cockpit
  - Onboard weather radar can be inaccurate
  - Lack of graphical weather in the cockpit

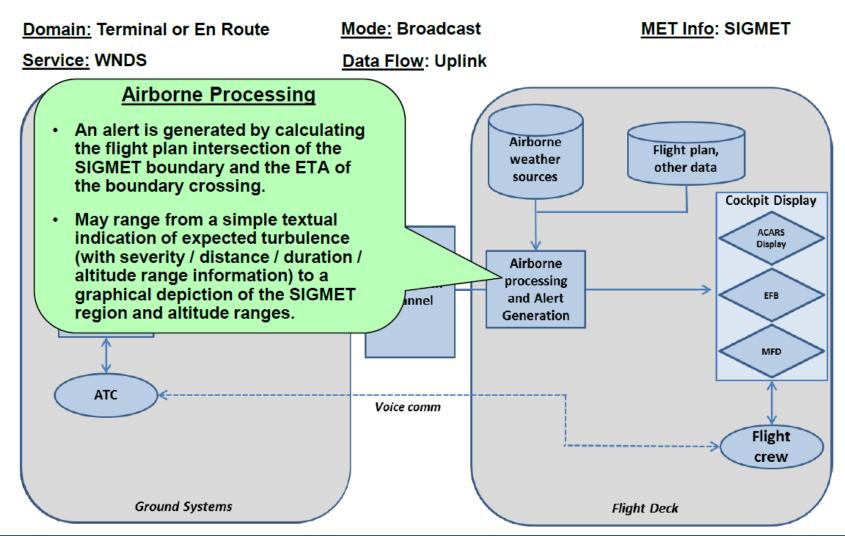



### **Candidate Strategic Turbulence Alert**





Federal Aviation Administration


#### **Candidate Strategic Turbulence Alert**



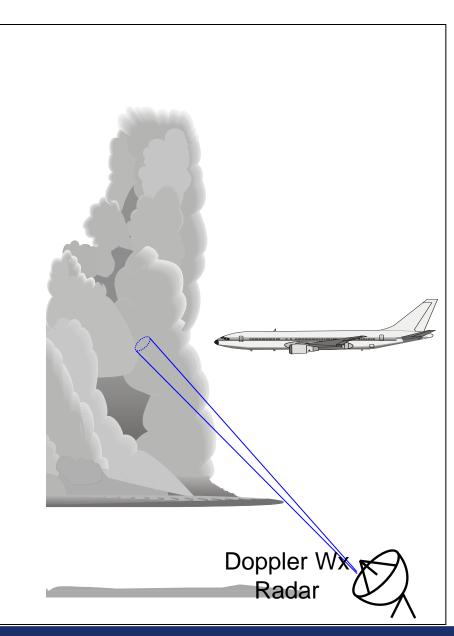


Federal Aviation Administration

### **Candidate Strategic Turbulence Alert**






# **Tactical Turbulence Alerting Function**

- Provide near real time notification of impending turbulence encounter
- Alerting function to assist with crew management versus turbulence avoidance
- Primarily addressing safety risk
- Plan to perform demonstration using NCAR's NEXRAD Turbulence Detection Algorithm (NTDA)



# What is the NTDA?

 The NEXRAD **Turbulence Detection Algorithm uses Doppler** weather radar data to measure turbulence in clouds, complementing GTG and radar reflectivity.





## What does NTDA measure?

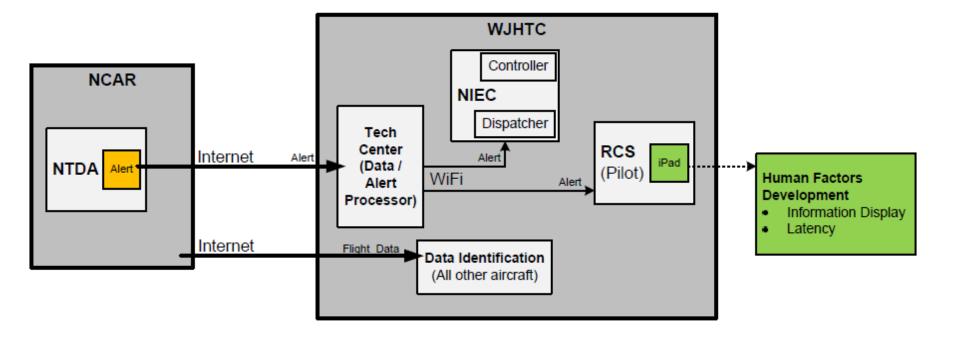
- Atmospheric turbulence: eddy dissipation rate (EDR),
  - EDR can be converted to the impact on an aircraft based on the aircraft type and flight parameters
- NTDA only measures turbulence where sufficient wind-tracing reflectors exist, i.e., in clouds and storms
  - Focus on in-cloud convectively-induced turbulence



## How can NTDA data be used?

- Tactical decision support for en-route aircraft
  - Improve situational awareness, airspace utilization, and safety.
  - May help obviate the need for "pathfinder" aircraft after airspace closures
- Measurements may be assimilated into turbulence nowcasts
- May be used as verification "truth" data for turbulence forecasts




18

# **Simulation Evaluation**

- Propose using a day in the life type scenario such as Case Study 1
- Data Collection
  - Pilot response during flight simulation
  - Pilot post flight simulation questionnaire
  - Data capture from data received from NCAR
  - Post event download to NCAR



#### **Tactical Turbulence Alerting Notional Architecture**



