

Weather Technology In The Cockpit (WTIC)

EDR Uplink Quantitative Benefits Analysis

Mike Robinson AvMet Applications, Inc.

September 2014
Turbulence Workshop

Motivation

 Lack of timely, accurate turbulence information for use in flight operations results in impacts to NAS flight safety, to effective capacity utilization, and to flight efficiency (fuel burn/emissions)

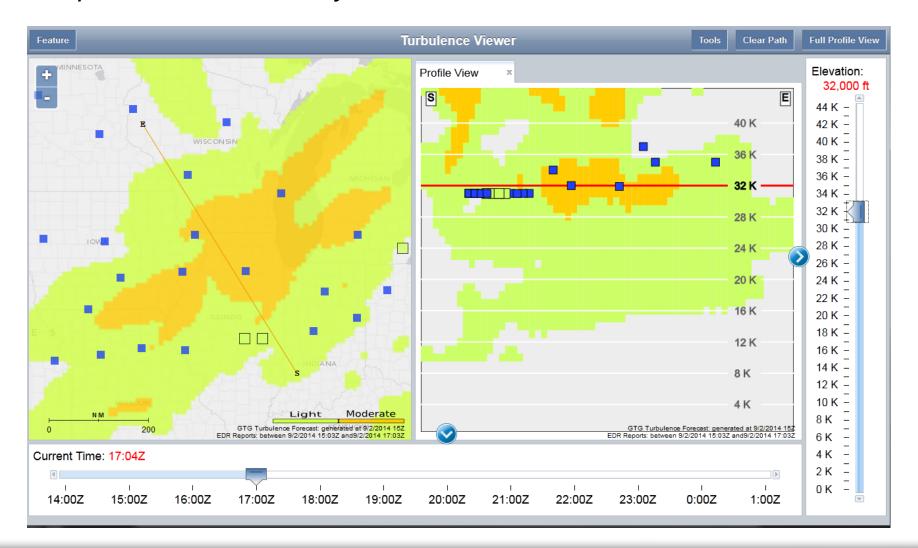
User concerns:

- <u>Crew/Dispatch:</u> Multiple (sometimes conflicting) data sources, PIREP subjectivity, cabin management, tolerance for risk; Data "timeliness" an issue
- ATC: No access to real-time turbulence data in work area, ride reports passed from controller to controller during shift change, "blocked" out altitudes can persist for hours
- Flight Attendants: Cabin management / uncooperative passengers, obligation to continue duties when seatbelt sign is on

"EDR Uplink" Demonstration Pilot Use of Real-time Turbulence Viewer in Cockpit

 WTIC EDR Uplink Demonstration is assessing the feasibility of using low-cost devices to display turbulence information in the cockpit for direct use by the flight crew

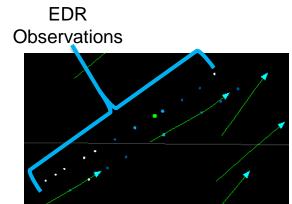
Goals:


- Identify the feasibility of providing and displaying the EDR/GTG information to crews on the flight deck through existing WIFI link
- 2. Identify and address human factors considerations associated with providing the EDR/GTG data to flight crews
- 3. Quantify the efficiency and capacity benefits to the NAS of providing the EDR/GTG data directly to flight deck
- Cooperative effort with DAL
 - 40 DAL 737 and 28 DAL 757 Line Check Airmen (LCA) pilots provided Turbulence viewers on IPads (737) or Microsoft Surface Tablet (757)
 - LCAs fill out detailed usage surveys (on tablets) after each flight
 - Data collection period: August 2013 July 2014

integration training consulting engineering

Turbulence Viewer

Developed and Maintained by BCI



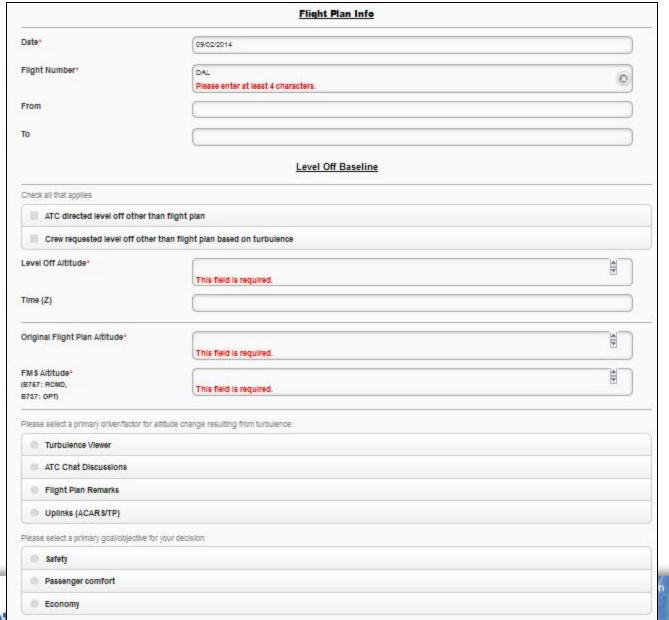
Experiment Data

- Data collected throughout the baseline period and demonstration period included:
 - EDR
 - PIREP
 - GTG (Analysis/Forecast)
 - NCWD
 - Aircraft data (equipment, altitude, etc.)
 - Flight Data (actual vs. planned)

- Baseline period (October 2012 June 2013)
 - Baseline data used to establish pre-demonstration and pre-viewer flight crew behaviors in / around areas of clear-air turbulence (e.g., not convectivelyinduced)
- Demonstration period (August 2013 July 2014)
 - Additional, key data during demonstration included questionnaire data submitted by pilots who have the viewer onboard

Data Analysis

- EDR, GTG, and aircraft data mined to identify actions which could be associated with turbulence
- General data captured identified various scenarios associated with altitude changes associated with clear air turbulence:


Actionable Item	Flight encounters turbulence	Flight does not encounter turbulence	Flights in the vicinity report / discuss turbulence	
Considerations	Severity, duration of turbulence experience, turbulence forecast data			
Flight Response	Change/No change in altitude/sector			
Equipment	Viewer equipped, EDR equipped, aircraft type			
NAS Impact	Location / workload			
Other Information	PIREPs, Questionnaire data, severe weather proximity			

Various combinations
as well as specific
details provide
different scenarios and
opportunities for a
benefits analysis

Key Data: Turbulence Viewer Questionnaire

training

Demonstration Data Collection (Aug '13 – July '14)

Evaluating questionnaires during demonstration period

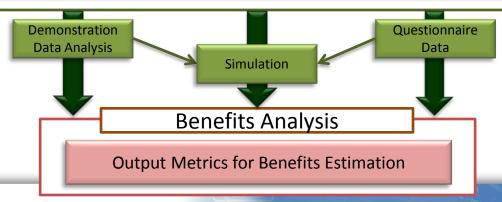
- 758 questionnaires submitted
 - 462 (61%) selected "Turbulence Viewer" as primary driver for altitude change or remaining on cruise altitude
 - » 145 (31%) selected "Economy" of "Safety" as the primary reason
 - » 312 (68%) selected "Passenger Comfort" as the primary reason
 - » 267 (58%) noted altitude changes

Comments submitted include:

- Viewer allowed me to see forecasted Turb moving south. I was able to stay at 380
- Maintained a smooth altitude to avoid light/mod turbulence presented by the viewer.
 Maintained F350 as opposed to climbing to FMS recommended and flight plan Alt of F390
- Viewer allow(ed) us to stay at optimum altitude and avoid an unnecessary descent.
- Viewer allowed us to see only a small pocket of chop. We stayed at optimum.

Benefits Analysis Framework

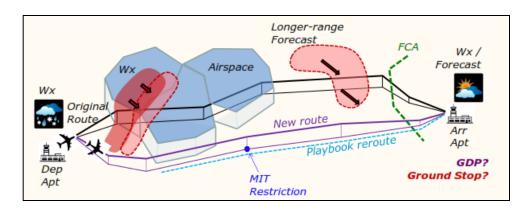
Pre-Demonstration Actions

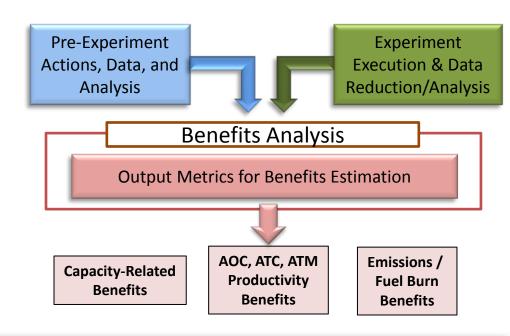

- Define Benefits Objectives
- Define Operational Benefits Scenarios
- Identify Data Needs to Isolate Benefits
- Develop Methods for Assessing Metrics
- Identify and Assess Turbulence Encounter / Response Baseline Environment (Isolating Shortfall Scenarios)
- Baseline: October 2012 June 2013

Demonstration Execution

Demonstration Data Collection

- Identify potential benefit scenarios; Case event vs. baseline environment comparisons
- Objective Analysis of NAS-wide benefits opportunities given specific scenarios

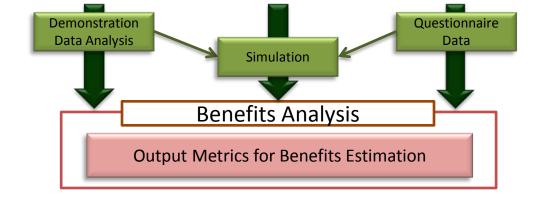




integration

Turbulence Viewer Quantitative Benefits Analysis

- Dynamic Airspace Routing Tool (DART) a weather-aware "superfast-time" ATM simulation model – has ability to:
 - Automatically generate most-economical reroutes using weather diagnostic/forecast blend (including EDR/GTG here);
 - Combine reroutes and/or ground delays (and cancellations where needed);
 - Apply user-specified cost parameters for a benefits analysis, reroute strategies, and risk tolerance factors; and
 - Apply actual and simulated TMIs within the modeling environment
- DART will be used to recreate and evaluate primary benefits scenarios identified from Turbulence Viewer experiment



DART-focused Benefits Areas for Turbulence Viewer Experiment

- Primary operational impact identified as a result of the EDR/GTG information in cockpit is a reduction in unnecessary altitude changes prior to or during a turbulence encounter
- Benefits may be extracted which include:
 - 1) Reduction in ATC workload
 - Communications
 - Sector changes
 - Flight amendments
 - Requests for ride reports
 - 2) Reduction in fuel burn / emissions
 - Magnitude of altitude change
 - Frequency of altitude change
 - 3) Capacity utilization efficiency
 - Reduction in ATM actions
 - Reduction in NAS Delay / Airline Operating Cost & Passenger Value Time

Completed DART simulations for a 6 month period

- January June 2014
- 1,322 simulations
- Separated results by region and time of day
- Categorized days by varying coverage of turbulence

Benefits Quantification Simulation Studies

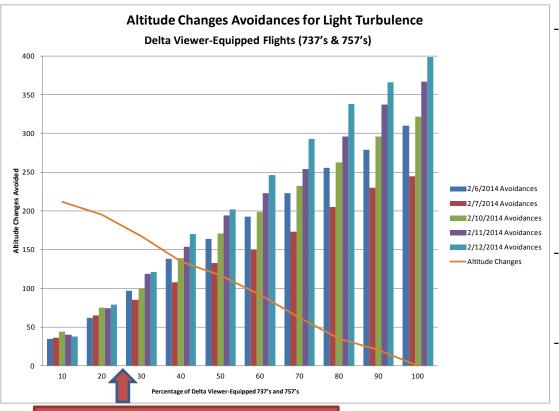
- Identified simulation scenarios based on questionnaire responses collected during demonstration and/or observed data from demonstration
- Benefits quantification determined from questionnaire responses, demonstration data, and simulations

Reduction in flights changing altitude for less than moderate turbulence	DART	Observations / Questionnaire
Reduction in flights changing altitude for moderate turbulence	DART	Observations / Questionnaire

	Benefits Analysis	Simulation	Basis	Notes
1	Reduction in fuel usage / emissions from less flights changing off optimal planned altitude for turbulence	DART	Observations / Questionnaire	Magnitude of altitude changes determined from observations, percentages and results derivations applied to simulation results
2	Reduction in ATC communication workload (i.e., sector changes, flight amendments, ride reports/requests) from flights changing altitude	DART / ATC Workload Model	Questionnaire	Changes in altitude require communications with ATC and others. Reductions in ride reports / requests as well are possible based upon viewer input.
3	Reduction in "unnecessary" altitude changes	-	Questionnaire	Direct response from questionnaire
4	Improved capacity utilization	DART	Observations / Questionnaire	Identify location of altitude changes per simulation modeling, evaluate ATM decisions based on frequency, location, and timing; Assess associated change in delay/cost

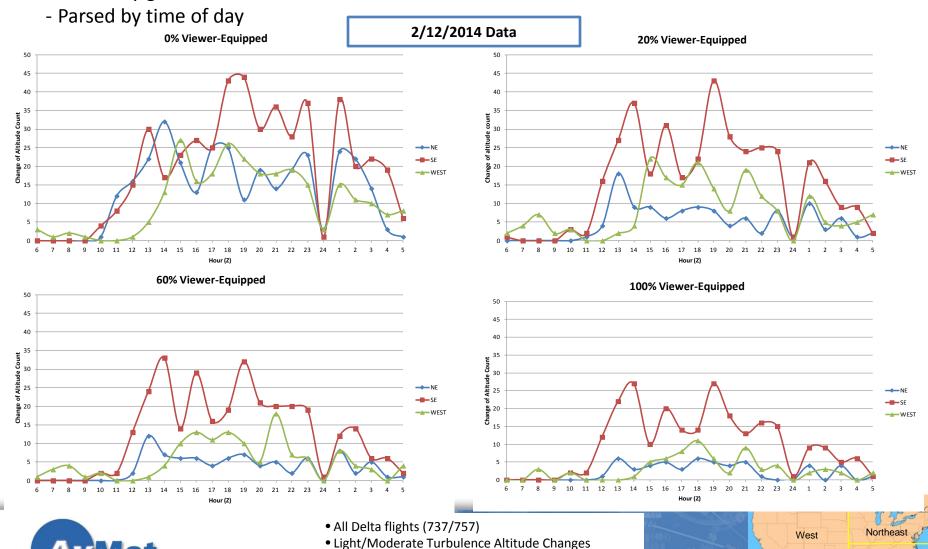
integration

Turbulence Viewer Benefits – Simulation Test (1 of 3)


- Conducted 104 DART simulations for 1 week of GTG data (weekdays only)
 - Incrementally increased percentage of 737s and 757s with viewer
 - -~800 737/757 flights
 - Defined behavior of flights with viewer as:
 - Encounters with light turbulence = No change altitude
 - Encounters with moderate turbulence = Change altitude
- Simulation data collected included number of:
 - Viewer-equipped 737s & 757s
 - Altitude changes by:
 - Viewer-equipped flights & NAS
 - Cause (i.e., light vs. moderate turbulence)
 - Latitude / Longitude
 - Altitude changes avoided due to viewer

Turbulence Viewer Benefits – Simulation Test (2 of 3)

- Conducted 104 simulations for 1 week of GTG data (weekdays only)
 - Incrementally increased percentage of 737s and 757s with viewer
 - Defined behavior of flights with viewer as:
 - Encounters with light turbulence = No change altitude
 - Encounters with moderate turbulence = Change altitude


- Results show an increase in altitude change avoidances caused by less than moderate turbulence for viewer-equipped aircraft
 - Averages/day:
 - 71 20% w/ viewer
 - 142 40% w/ viewer
 - 202 60% w/ viewer
 - 272 80% w/ viewer
 - 329 100% w/ viewer
- Reductions for viewer-equipped flights also decreases as more flights are equipped with a viewer
- Per model rules, moderate turbulence areas are unavoidable and require altitude changes
 - Average ~ 55/day (Delta 737/757)

With demonstration LCA participation, on any given day, could have ~26% of DAL B737/757 fleet viewer-equipped (68 LCA's operating 266 aircraft)

Turbulence Viewer Benefits – Simulation Test (3 of 3)

- Location of altitude changes within NAS used as identifiers for sector capacity issues
- Results for location of altitude changes from simulations
 - Parsed by general location

Southeast

15

Summary

- Intensive, collaborative effort undertaken to evaluate multi-faceted challenges and potential benefits of direct pilot access to real-time turbulence data for enhanced decision-making
- AvMet supporting FAA effort to assess potential capacity utilization and operational efficiency benefits attributed to alternative turbulence impact management decisions via enhanced cockpit data access
- Analyzing objective weather and flight behavior data in conjunction with turbulence viewer surveys from DAL pilots to inform high fidelity simulation experiments for quantifying efficiency-related benefits
- Preliminary NAS-wide results keying on primary mode of cockpit viewer benefits show significant opportunities for improved operations
- AvMet working data analysis and simulation data reduction / evaluation now; Final results to FAA end of October.

