

GEWEX CPCM, Tropical Climate Part 1 8 September 2016

Acknowledgements

- Richard Johnson, Sue van den Heever, Eric Maloney, Dave Randall, Cathy Hohenegger
- George Bryan for providing CM1, including assistance

MJO Convective Onset in the Indian Ocean

- Madden–Julian oscillation (MJO) "onset"
- Dynamics of the MJO (DYNAMO; 2011–12)

Ruppert and Johnson (2015, JAS)

MJO Convective Onset in the Indian Ocean

Ruppert and Johnson (2015, JAS)

Diurnal Composites (repeated 3x)

Study Objective

Does the diurnal cycle of moist convection rectify* onto longer timescales?

- Simulate the cumulus diurnal cycle in a suppressed regime, isolate nonlinear (daily-mean) forcing
- *Rectification: intraseasonal upper ocean warming (Webster et al. 1996; Bernie et al. 2005; Shinoda 2005)

Model Framework

- CM1 (Cloud Model 1; Bryan and Fritsch 2002) initialized from mean suppressed phase sounding
- Physics:
 - Morrison 2-moment microphysics
 - Deardorff TKE
 - <u>Goddard LW, SW radiation</u>
 - Surface:
 - Prescribed SST, diurnal cycle (2°C range)
 - Fixed exchange coefficients
- Model Domain:
 - O(100 km) in *x,y*, 22 km in *z*
 - $-\Delta x, y = 200 \text{ m}, 50 \text{ m} < \Delta z < 350 \text{ m}$

Model Framework

- Large scale must be parameterized: "Weak Temperature Gradient" (WTG) balance:
 - Diabatic sources offset by large-scale adiabatic motion $\rightarrow w_{wtg}$
 - w_{wtg} diagnosed during runtime, used to advect θ and q
 - Spectral WTG relaxation: θ-anomalies endure as an inverse function of depth (Herman and Raymond 2014)
- Diurnal cycle in **w**_{wtg}

Experiment Rationale

- Stretch the diurnal cycle to scale nonlinearity:
 - NODC: diurnal forcing (shortwave, SST) fixed to daily means
 - **12H**: diurnal cycle scaled to 12 h
 - **24H**: ... to 24 h
 - **48H**: ... to 48 h

Day-to-day Evolution

Drying wanes, moistening takes over

Moistening accelerated for longer diurnal period → indicative of diurnal timescale feedback

Mean Differences

Reduced large-scale subsidence

The Diurnal Cycle Accelerates Onset

Diurnal Cycle of θ_v

- PBL warmest in the afternoon
- Aloft, signal shifted earlier due to *w_{wtg}*

Revelle soundings

• Much greater θ_v^* amplitude

NODC

Cloud-layer Humidity, Lapse Rate, and Convection

12H

Cloud-layer Humidity, Lapse Rate, and Convection

24H

Cloud-layer Humidity, Lapse Rate, and Convection

48H

Cloud-layer Humidity, Lapse Rate, and Convection

Diurnal forcing agents—moisture and stability—amplify with diurnal period

The Diurnal Cycle Accelerates Onset

Conclusions

- Co-varying diurnal cycles of lapse rate and humidity increase daily-mean convective heating (a nonlinear timescale feedback)
- This timescale feedback accelerates the onset of deep convection, assuming WTG balance

Open Questions

- A more complete treatment of large-scale dynamical coupling is required
 - Large-scale *w* is crudely represented here \rightarrow substantial amplitude bias in θ , *w*_{wtg}
- Do / how do diurnal timescale feedbacks manifest in other climate regimes?
 - Over land, where the diurnal heating cycle is much stronger
 - Over the Maritime Continent (land-sea contrast)

References

- Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. *J. Clim.*, **18**, 1190–1202.
- Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. *Mon. Wea. Rev.*, **130**, 2917–2928.
- Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution Requirements for the Simulation of Deep Moist Convection. *Mon. Wea. Rev.*, **131**, 2394–2416.
- Herman, M. J., and D. J. Raymond, 2014: WTG cloud modeling with spectral decomposition of heating. *J. Adv. Model. Earth Sys.*, **6**, 1121–1140.
- Madden, R., and P. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. *J. Atmos. Sci.*, **28**, 702–708.
- Ruppert, J. H., Jr., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. *J. Atmos. Sci.*, **72**, 1622–1647.
- Ruppert, J. H., Jr., and R. H. Johnson, 2016: On the cumulus diurnal cycle over the tropical warm pool. *J. Adv. Model. Earth Syst.*, **8**, 669–690.
- Ruppert, J. H., Jr., 2016: Diurnal timescale feedbacks in the tropical cumulus regime. J. Adv. Model. Earth Syst., accepted pending minor revisions.
- Shinoda, T., 2005: Impact of the Diurnal Cycle of Solar Radiation on Intraseasonal SST Variability in the Western Equatorial Pacific. *J. Climate*, **18**, 2628–2636.
- Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, Radiation, and the Diurnal Cycle of Sea Surface Temperature in the Tropical Western Pacific. *J. Climate*, **9**, 1712–1730.
- Zhang, C., J. Gottschalck, E. D. Maloney, M. W. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. *Geophys. Res. Lett.*, **40**, 1223–1230.