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Aquaplanet 

Schär, ETH Zürich 

Bretherton and Khairoutdinov (2015) 
 
Δ=4 km, run for O(weeks) 
SAM model, anelastic 
near global aquaplanet (20,480 x 10,240 km) 

Cloud fraction [%] 
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LES simulations over Netherlands 

Schär, ETH Zürich 

Simulated cloud field on July 6, 2004  

Δx=100 m (LES) 

4000x4000x300 gridpoints 

3 cases simulated 

Domain decomposition using 256 GPUs 

Very limited set of parameterizations 
(e.g. no radiation) 

Periodic lateral boundary conditions 
non-rotating framework (f=0) 

(Schalkwijk et al., 2015, BAMS) 
Observed 
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Tropical Atlantic 

Schär, ETH Zürich 

MPI Hamburg 
(Stevens et al.) 
 
Δ=2.5 km 
Run for O(days) 
Tropical Atlantic 
ICON Model 
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European-scale simulations 

David Leutwyler, ETH Zurich, animations via crCLIM: http://www.c2sm.ethz.ch/research/crCLIM  Schär, ETH Zürich 

[mm/h] 
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Convection over lake Constance 

Schär, ETH Zürich April 27, 2016, Lake Constance (Kurt Abderhalden) 

Ø  Switch off convection 
parameterization 

Ø  More closely based on 
first principles 

Rotunno et al. 1988 
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Convection and flash-flooding 

Schär, ETH Zürich 

Flooding in  
St. Gingolphe, Valais 
May 1, 2015 

Flashflood in Wil (Switzerland) 
June 15, 2015 
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Convection and debris flows 

Schär, ETH Zürich 

ILLHORN 

RHONE 

Debris flow 
July 22, 2016 

Pierre Zufferey, https://youtu.be/0ENe7wDKP6I 

Triggered by a convective cell 



11 

 Representation of feedback processes 

Schär, ETH Zürich 

Parameterized convection: 
Dominated by  

vertical exchange 
(column view of feedbacks) 

wet dry 
Explicit convection: 

Three-dimensional meso-scale 
circulations matter 

(3D view of feedbacks) 

(e.g. SMP feedback; Hohenegger et al. 2009, Taylor et al. 2011, Froidevaux et al. 2013) 
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Diurnal convection over Europe 

(SEVIRI 10.8µm, June 30 till July 2, 2009; Michael Keller, ETH Zürich) Schär, ETH Zürich 
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Climate simulations at km-scale 

Schär, ETH Zürich 

Grell et al. 2000 

Knote et al. 2010 

Grell et al. 2000:  
46x46 gridpoints at 1 km 
14 months 

Knote et al. 2010:  
ca 200 x 150 gridpoints at 1.3 km 
several decades 

Kendon et al. 2012: 
ca 400 x 300 gridpoints at 1.5 km 
several decades 
 

This presentation: 

Ban et al. (2014, JGR; 2015 GRL): 
500 x 500 gridpoints at 2.2 km 
several decades 
driven by ERA-Interim and  
MPI-ESM-LR (RCP 8.5)  

Leutwyler et al. (2016, GMD, in press): 
1536 x 1536 x 60 gridpoints at 2.2 km 
one decade completed 
driven by ERA-interim 
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Mean precipitation Wet-hour frequency Heavy precipitation

Validation of diurnal cycle 

Schär, ETH Zürich 

poor representation of diurnal cycle with Δ=12 km 
dramatic improvement with Δ=2 km 

OBS 
Δ = 12 km 
Δ = 2 km 

(Ban et al. 2015, GRL) 

10-year long simulation driven by ERA-Interim; 
Validation against 62 rain-gauge stations in Switzerland (JJA) 

Alpine domain 
2.2km (500x500x60) 
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Domain size matters 

Schär, ETH Zürich 

Ø  A boundary zone of 100-200 km is affected by transition from 
parameterized to explicit convection.  

Ø  Very small domains damage the statistics of convection. 
Ø  Our simulations use wide lateral relexation zone (50 grid points). 

The statistics of convective cell needs to develop within computational domain! 

Lifecycle of a convective cell: 
  Lifetime:  6h 
  Propagation:  10 m/s 
  Distance:  200 km 

(Houze 2014) 
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European-scale simulations 

Schär, ETH Zürich 

Ø  GPU-version of COSMO model 
•  Large effort led by O. Fuhrer (MeteoSwiss) 

- runs entirely on GPUs 
- dynamical core rewritten in C++ 
- parameterizations use OpenACC 

•  Also used for operational NWP (Δ=1 km) 

•  Runs on Piz Daint (Cray XC30, CSCS) Piz Daint: Linpac peak performance: 6x1015 Flop/s   

Oliver Fuhrer (MeteoSwiss), Xavier Lapillone (C2SM / ETH), et al.;   
Thomas Schulthess (CSCS), et al.;  

PhD of David Leutwyler, Leutwyler et al. (2016) 

Ø  European-scale climate simulations  
•  Δ=2.2 km, 1536 x 1536 x 60 grid points 

•  Uses intermediate-resolution Δ=12 km simulation 

•  Able to run 1 year in 5 days wall-clock time 

•  Completed 10 years driven by ERA-Interim 
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Simulations at 12 and 2 km 

Leutwyler et al. (2016), ETH Zurich, animations via crCLIM: http://www.c2sm.ethz.ch/research/crCLIM  Schär, ETH Zürich 

[mm/h] 
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Schär, ETH Zürich 

Kyrill 
Jan 18, 2007, 12 UTC 
Δ = 2 km 

mm/h 
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Schär, ETH Zürich 

Kyrill 
Jan 17, 2007, 12 UTC 
Δ = 50 km 

mm/h 
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Schär, ETH Zürich 

Kyrill 
Jan 17, 2007, 12 UTC 
Δ = 12 km 

mm/h 
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Schär, ETH Zürich 

Kyrill 
Jan 17, 2007, 12 UTC 
Δ = 2 km 

mm/h 
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Schär, ETH Zürich 

Kyrill 
Break-up of cold-frontal  
rain band at Δ = 2 km 

mm/h 

   Jorgensen et al. (2003) 
Radar observations (Pacific)  
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Representing convection 

Schär, ETH Zürich 

Δx = 2 km Δx = 12 km 

E
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Statistics of vertical wind at 500 hPa level, 6h resolution 

Leutwyler et al. (in prep), ETH Zurich 
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Gust fronts  and  cold-air pools 

Schär, ETH Zürich 

(Jin-Yi Yu, University of California, Irvine) (Rotunno et al. 1988) 
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Simulations at 12 and 2 km 

Schär, ETH Zürich Leutwyler et al. (2016), ETH Zurich, animations via crCLIM: http://www.c2sm.ethz.ch/research/crCLIM  
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Schär, ETH Zürich 
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Parameterization challenges 

Schär, ETH Zürich 

 

Main points: 

1)  Most models have a history of implicit or explicit tuning and calibration. 
With explicit convection, balance may change. 

2)  Examples (see also Prein et al. 2015): 
- Microphysics: role of graupel and hail, cloud-radiative feedbacks, others 
- Turbulence: LES or not? 
- Topography and numerics: new role at high-resolution 
- Soil hydrology: soil-moisture temperature feedback 
 

<=  next slides 
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Temperature and soil-moisture biases 

Schär, ETH Zürich 

JJA temperature bias  
2 km run is warmer by about 1 K 

(Leutwyler et al. 2016, Keller et al. 2016, Linda Schlemmer) 

Δx = 12 km 
3 
2 

1 
0 

-1 

-2 

-3 

Δx = 2 km 

Precipitation 

2 km 
12 km 

High precipitation intensity @ 2km  
=> large surface runoff 
=> dryer soils  
=> higher surface temperature 

Runoff 

2 km 

Mean diurnal cycle of 
precipitation and runoff  
12 km has peak runoff in morning 
2 km has much larger runoff  
Sensitive to infiltration capacity 12 km 
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Temperature and soil-moisture biases 

Schär, ETH Zürich 

Relative soil moisture (August 2007) 

Michael Keller, ETH, PhD 2016:  
mountains are wetter than valleys 

High-altitude enhanced precipitation leads to wet soils and  
overestimation of lapse-rates 

Kotlarski et al. 2012: lapse-rates are  
systematically overestimated by RCMs 

OBS (E-OBS) 
OBS (ZAMG) 

RCM2 
RCM1 

El
ev

at
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n 
[k

m
] 

Surface Temperature [ºC] 

Lapse-rate derived from surface data 

Alps 
2000 

1000 

0 
–5 0 5 10 15 
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Compute challenges 

Schär, ETH Zürich 

 

Main points: 

1)  Modern supercomputers increasingly use a heterogeneous / hierarchical 
design (e.g. with accelerators and/or GPUs).  

2)  This trend is likely to continue, e.g. driven by considerations of energy 
consumption (e.g. Schulthess 2015) 

3)  Moving data is as important as compute operations: 
It becomes imperative to reduce communication as far as feasible.  

4)  Most atmospheric models use double precision, in reduced 
computational precision would be sufficient (Düben and Palmer 2014) 
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Compute Challenge 

Schär, ETH Zürich 

CUDA 
Core 

1 CC 
1 GPU = 
15 SMXs 

CPU 

GPU 

1 Node = 
1 GPU & 1 CPU 

1 SMX = 
192 CCs  &  64 DPs  

Double 
Precis. 

Unit 

1 DP 

Piz Daint = 5272 Nodes 

CPU 

GPU 

CPU 

GPU 

CPU 

GPU 

CPU 

GPU 

Emerging hardware architectures 
are highly heterogeneous 

Piz Daint Cray XC30 
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  Cray 1  versus  Kepler GPU 

Schär, ETH Zürich 

Performance: 160 MFlops 
Main memory: 8 MByte 

Weight:  5.5 tons (Cray-1A) 
Cost:  about 10 Million $ 

Peak performance:   
Double precision: 1311 Gflops 
Single Precision: 3.95 TFlops 

Memory:   
L1/2 Cache: 960 + 1536 kByte 

VRAM: 6 GB 
Weight:  about 0.5 kg 
Cost:  about 3000 $ 

Kepler GPU (GK110) 
GPU = Graphics Processing Unit 

(released 1975) 
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Compute challenge 

Schär, ETH Zürich 

Fuhrer et al. (2014), http://superfri.org/superfri/article/view/17 
Gysi et al. (2015), http://sc15.supercomputing.org/schedule/event_detail?evid=pap298 

Lapillone and Fuhrer (2015), http://www.worldscientific.com/doi/abs/10.1142/S0129626414500030 
 

 
 

main  (Fortran + OpenMP / OpenACC) 

 
Stencil Library 

(STELLA) 
(OpenMP, CUDA) 

 

 
Boundary Conditions 
and Halo Framework 

 
Shared Infrastructure Communication 

Library (GCL) 

Physics, Assimilation,  
and other code 

(Fortran + OpenMP/OpenACC) 

Dynamics (C++) 

Libraries (MPI, NetCDF, grib1) 

System 

Interface Layer (Fortran/C++) Rewritten 
dynamical 
core 

Hardware- 
dependent 
code 

GPU-Version of COSMO model 
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Propagation in the atmosphere 

Schär, ETH Zürich (Hohenegger and Schär, 2007, JAS) 

Signal after 6 min (30 time steps) 

Propagation of initial perturbation  
by sound waves (about 310 m/s)   

 
Not physically relevant, 

but numerically! 

Signal after 6 hours 

Propagation by and growth of 
gravity waves 
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Propagation in models 

Schär, ETH Zürich 

Physical propagation 
in the atmosphere 

 (ca 400 m/s) 

Propagation of data 
in a split-explicit model 

(ca 1000 m/s) 

Propagation of data 
in a global spectral model 

(global communication 
at each time step) 

 
In order to minimize communication of data,  

numerical methods should reflect principles of physical propagation 
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Data challenges 

Schär, ETH Zürich 

 

Main points: 

1)  Data storage is becoming a critical bottle neck: 
Mass storage requirements (with a dramatically reduced output list): 
•  10-year simulations of David Leutwyler:  55 Terabyte  
•  Global simulations at same resolution:  25 Petabyte 

2)  Fundamental limitation is I/O bandwidth 

3)  New strategy explored in project crCLIM at ETH 
- perform online analysis 
- rerun simulations (or virtualize workflow) 
- make model bit-reproducible across platforms 
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Output Challenge 

Schär, ETH Zürich 

60,000 

50,000 

40,000 

30,000 

20,000 

10,000 

Volume of ECMWF Archive [Terabytes] 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Deletion of 1 PByte 

(Baudouin Raoult, ECMWF) 

“Deleting old data in an exponentially 
growing archive is meaningless” 
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Ø  Recreate model trajectory and use online analysis 

Initial run 
1999 2000 2001 2002 2003 ... 

Output challenge 

Schär, ETH Zürich 

Ø  Requires bit-reproducible code across hardware platforms 
Initial work (Andrea Arteaga, Oliver Fuhrer and Torsten Hoefler) suggests this 
is feasible at reasonable costs and partly guaranteed by IEEE standards 

Ø  Consider use of online analysis rather than mass storage 

Rerun (in parallel) 

restart files 

Hardware 2 

Hardware 1 

Fundamental limitation is I/O bandwidth 
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What is feasible 
today? 

Schär, ETH Zürich 

Ø  Decade-long European-scale simulations 
•  Able to run 1 day in 20 minutes (1 year in 5 days) 
•  Domain-decomposition with 12 x 12 domains,  each  

running on a GPU/CPU node (144 nodes, 2.8% of PizDaint) 
 

Ø  CORDEX simulations – Strong scaling: Increase # of nodes for given domain 
•  Resolution of 12 km, 150 year long, domain covering Europe.   

Able to run 1 year in 18 hours on 10 nodes (poor strong scaling) 
•  On dedicated PizDaint (5272 nodes): Large 500-member ensemble feasible 

 
Ø  Global simulations – Weak scaling: Increase domain size with # of nodes 

•  Exploit excellent weak scaling on dedicated Piz Daint (5272 nodes): 
At a resolution of 2.8 km, whole planet could be covered. 

•  In principle, global convection-resolving AGCM simulations feasible today! 
•  Would require online analysis (I/O bandwidth becomes critical bottle neck). 

See project crCLIM at ETH:  http://www.c2sm.ethz.ch/research/crCLIM.html   

peak performance: 6x1015 Flop/s   

(see also Palmer 2015) 
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Schär, ETH Zürich 
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