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Introduction

* Inverse Problem refers to problem of characterizing the system of interest by
exploiting measurements resulting for the system (eg. source identification).

— Source parameters, initial conditions, boundary conditions
— Uncertainty in the identified source parameters, initial conditions, etc.

* Inverse problems are often ill-posed (eg. optical flow).

— Tikhonov regularization

e For large scale systems (eg. volcanic plume source ID), the computational cost is
significant.
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PUFF simulation model

e PUFFis a Lagrangian Trajectory Volcanic Ash Tracking Model which initializes and
transports a collection of discrete ash particles, representing a sample of the
eruption cloud.

» Different types of transport include:
— Advection: due to the wind field (W)
— Diffusion: due to turbulent dispersion (Z)
— Fallout: due to the gravity and Stoke’s law (S)

e Lagrangian Model:
R (t+At) =R (t)+W (At + Z(t)At+S, (t)At i=1,... Number of particles

where, R (t) is position vector of it ash particle at time t.
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PUFF simulation model

 W(t)is the local wind velocity which is calculated for each particle by interpolating
four dimensional (longitude/latitude/height/time) wind data (obtained from
forecast meteorological data) to the particle’s position and time.

e Turbulent dispersion for each particle is modeled with a random walk process Z(t).

— Arandom walk is a process where a particle takes a step at discrete time intervals in
such a manner that each step is independent of the others.

e Turbulent dispersion Z(t)At is a vector containing three dimensional Gaussian

random numbers with zero mean and specific standard deviation [2K .
At

— Diffusion coefficient K is independent of particle size and local wind dynamics.

e Ash fallout S(t)=[0 0 s]"is three dimensional vector where the terminal
speed s; is approximated by using Stoke’s law and is a function of radius of
the particle r;, dynamic viscosity coefficient n, gravitational acceleration g,
density of the particle p,;, and density of the atmosphere p:

S. = EM ng

I 9 77 1
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PUFF simulation model
- Initialization

 Toinitialize the simulation, we need to specify initial location of ash [lat, lon, z], time
period of simulation t, and the number of particles N.

e Distribution of particles along elevation z direction can be defined in different ways:

= . . .
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- Initialization
Bent model:

In this simulation, Bent model has been used instead of mentioned methods for
describing the initial distribution of particles along the height.

 BENT solves a cross-sectionally averaged system of equations for continuity,
momentum and energy balance as a function of the eruption vent radius and
speed of the ejecta.

e BENT assumes a distribution of pyroclasts of different sizes, and the model
equations then predict the height distribution of the various sized clasts.

* For this research, the vent size, vent velocity, mean and deviation of particle size
form the source parameters which drive the BENT/PUFF model.

Effect of wind on the rise height of volcanic plumes, M. Bursik,
Geophysical Research Letters, Vol. 28, No. 18, pp. 3621-3624, 2001
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Inverse Problem

The inverse problem requires a forward model and observations

The BENT/PUFF advection-diffusion model is used to represent the plume dynamics

Parameter O with a given probability distribution

\ 4

Polynomial Chaos Quadrature Sampling
from Probability distribution of ©

A4

Propagation of Quadrature points through
the dynamic model of the system

Observation data from an
experiment or simulation

\ 4

data by using Minimum Variance
Estimation

Fusion of observation data and prediction

\\ 4
Estimation of Parameter ©
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Polynomial Chaos:

Originally used by Norbert Wiener in 1938, to describe the members of the span of
Hermite polynomial functionals of standard Gaussian random variables.

The PC series representation of random variables is used (Ghanem & Spanos, 1991) to
model uncertainty in dynamic systems.

The Hermite polynomial chaos expansion :
> AGaussian randomvariable: o € A(p,02) = agHg(¢) + a1 H1(£)

» Basis: Hermite polynomials Ho=1 Hi=¢e N(0,1)
ag = W a1 =o
Generalized (Xiu & Karniadakis, 2002) to use the orthogonal polynomials from the

Askey-scheme to model various probability distributions in the scheme, with
exponential convergence.

Probability Distribution Polynomial basis
Gaussian Hermite Polynomials
Gamma Laguerre polynomials

Beta Jacobi polynomials
Uniform Legendre polynomials
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Inverse Problem:

- Forward Propagation

Polynomial Chaos Quadrature:

The propagation of uncertainty due to time-invariant but uncertain input parameters
can be approximated by a generalization of polynomial chaos.

X(1,0) =f(7,0,x,u), Xx(ty) = Xp

where, X € R" and © € R™ can be written in Polynomial Chaos Expansion as:
N

xi(1,0) = Z xXi (DK (€) = X] (ND(E) = X(1,E) = Xpe(ND(E)
k=0

N
(Gi(E). bi(£))
(&) = | ey = Oy = T
61(€) = D O, du(€) = OT D(§) = O1.§) = 0, D& 6 (G ). b (E)

k=0
» By substitution of these equations back into stochastic differential equation, we have

N

ef(XPC’ E) = Z ";‘fk(r)(.’ﬁk(f) - f;‘(T. X;)C(T)(D(f)~ G)pcq)(f))« i=1,2,---.n
k=0

« To minimize this error, we use Galerkin approach to force its projections on basis
functions ¢,(&)s to be zero.
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Inverse Problem:

- Forward Propagation

« Evaluation of projection integrals is not always easy!

(ef(XpCs ‘_6}3 (p,r(‘f)) =
N o -
X, ] P& (E)dE — ] £i(1, X, (ND(E), O, DENG(EdE=0 i=1,---,n, j=0,--- N
=0 v¢ JE
( J
Y
=7

« To simplify integration process, we use M Quadrature Points

M
[ 610918 = Y watigo 6
g=1

M
f £i(1, X pe(DDE). @ DENGEPEIIE = D w1, Xpe(NDE)). ©peDE)S(£,)

g=1
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Inverse Problem:

- Data Assimilation

Minimum Variance Estimator:
z; =2, + Ki[¥x — E[h(xp)]]
= ZE + KkZ;},.
T o -1

Where, z, is the augmented state vector of states and parameters and prior and
posterior mean and covariance matrices are equal to:

N N
_ Z X0, > X,. 0,
A— A E [Z}’\] |: g;i(jl (I) Zk_ é E_[(Zk _ 2;)(Zk _ i;)T] — r;rl

Z ch pc Z @}'_J;‘{

PCq
i=1

N N

+ (l‘) Z X;J_;'; Z X;C,G);C;
7z, = E'[z] = l o SE N -20@ -2 = | v
Pcy 2 X;;C G);;C 2 G;c
i=1 i= '
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Inverse Problem:

- Data Assimilation

« Y, denotes the sensor output obtained from the following observation model:

Yi = y(tk) — h<xif.- @) - Vp

with known distribution for the noise v,.

* Aswell, h, %, andZ, are defined as:

h; £ E [h(x,.0)] = uqh(xk(fq))

QM&

“'—-v-—"'
M
T, £ E [z - 20(hx) — )] = > wy(zi(ép) - 2p)(h, — )
g=1
M
m = ET[(h(x) — hp)(h(x,) —hp)' ] = Z wy(hy —h)(hy —hp)"
q=1
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Simulation:

* For validation purposes, we consider the Eyjafjallajokull eruption scenario.

 PUFF model used to propagate ash parcels in a given wind field (NCEP Reanalysis)
through time concentrating on the period 14-16 April 2010.

e Variability in the height and loading of the eruption is introduced through the
volcano column model BENT.

e Table 1 lists all source variables together with their assumed uncertainties.

Vent Radius, b, (m) 65— 150 Uniform, + definite
Vent Velocity, w, (m/s) 45 - 124 Uniform, + definite

Mean Grain Size, Md¢, [0) 2 boxcars: 1.5-2and3-5 Uniform e R
units

04 $ units 2-6 Uniform e R
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Simulation

e Forward Propagation:

(A 0041 -0 16 Dae (0000

Dol probabaliny, suber comteur 0.2, mner 0T

(a) April 16™, 0000 hrs (b) April 16", 1200 hrs

Probability distribution contours and satellite image

Outer Contour: 0.2 (probability of ash present in enclosed area is >=20%)
Inner Contour: 0.7 (probability of ash present in enclosed area is >=70%)
Colored plume: spatial variation of observed plume ash height
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Simulation

Vent Radius

* |nverse Problem:
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SCIPUFF

SCIPUFF (Second-order Closure Integrated PUFF)

* Developed by Titan Corporation, Princeton, NJ under the sponsorship of U. S.
Defense Special Weapons Agency (DSWA)

« a Lagrangian transport and diffusion model for atmospheric dispersion
applications.

 uses three dimensional Gaussian puff representation for the
concentration field of a dispersing contaminant to solve advection-
diffusion equation.
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Location Uncertainty

* Source of the material is assumed to be uniformly distributed on a square of
(2, 4] x [2, 4] km?2.

* Time period of simulation is considered to be 1 hour (3600 sec.)

* 101 x 101 grid is used to record the concentration of Propane during the
propagation time period.

Uncertain domain of source location Applied Wind Field for Simulation Purposes
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PCQ approach

10x 10 quadrature points are being used to cover the support of source location.
These quadrature points are propagated by using SCIPUFF model during the time.

Polynomial basis functions are constructed according to the applied distribution for the
uncertain source location.

Coefficients of PC expansions can be found using

the Polynomial Chaos quadrature technique. g
After finding coefficients, PC expansion of h il
the output of the SCIPUFF model is constructed e
acc. to distribution of uncertain source.

Large number of realizations of PC expansion

Probability Distribution of Concentration = 1072 at t=30 sec.

25

is generated.

Probability Distribution of concentration > threshold =
is equal to the number of PC realizations which are s
greater than that threshold divided by the total 10

number of realizations.

yikm)

5

0
0 5 10 15 20 25

x(kmy)
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Inverse Problem:

Given a set of observation data and a priori information about the source location,

what is the best guess about the actual position of the source?
¥ =h(t, ¢ (2)) +v,
v=N(O,R)

where, Xe R", § e R™,n>>m and Z € R? represent states, observations,
and coordination of source location, respectively.

Points wi
254

ith the available concentration data (treated as states)

Location of applied sensors to

measure the concentration

0
25
x(km)

10 15 20 25
X(km)
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Source ldentification
- Numerical Simulations

e 16 sparsely distributed sensors have been considered for observation purposes.
e Observation data are polluted with noise.
e Source location is assumed to be uniformly distributed
over [2,4]x[2,4] km?2.
e Actual source location is at point (3.8, 2.2).
e Source uncertainty is assumed to be the only
uncertainty in the model dynamics.

Polynomial Chaos Quadrature (PCQ) Points have been used during estimation.
25 N . .

Applied Wind Field for Simulation Purposes
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Source Identification using PCQ

-Green squares: Sensor location

- Red points: Quadrature points applied to
cover the domain of uncertain source

-White point: actual source location
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Conclusion

Polynomial Chaos based minimum variance estimator

e Performs well in estimation of parameters of the system.

e Applicable to any type of probability distribution for the parameters (as opposed
to Kalman Filter).

* Applicable to large scale systems (>18000 states in illustrated example, about 4000
grid locations with non-zero ash).

* Has been verified on other examples like source estimation of atmospheric
releases by using SCIPUFF model.

e Can be applied as a batch or recursive estimation techniques.
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