Polynomial Chaos based Minimum Variance Approach for Characterization of Source Parameters

Reza Madankan, Puneet Singla ,Tarunraj Singh, Abani Patra, Marcus Bursik, Bruce Pitman, Matt Jones University at Buffalo

> P. Webley, J. Dehn University of Alaska, Fairbanks

> > M. Pavlonis NOAA/NESDIS

Fukushima Source Term Estimation (STE) Workshop, Feb. 22-23, NCAR, Boulder, Colorado

Introduction

- Inverse Problem refers to problem of characterizing the system of interest by • exploiting measurements resulting for the system (eg. source identification).
 - Source parameters, initial conditions, boundary conditions
 - Uncertainty in the identified source parameters, initial conditions, etc.
- Inverse problems are often ill-posed (eg. optical flow). ۲
 - Tikhonov regularization
- For large scale systems (eg. volcanic plume source ID), the computational cost is ulletsignificant.

PUFF simulation model

- PUFF is a Lagrangian Trajectory Volcanic Ash Tracking Model which initializes and ullettransports a collection of discrete ash particles, representing a sample of the eruption cloud.
- Different types of transport include: ۲
 - Advection: due to the wind field (W)
 - Diffusion: due to turbulent dispersion (Z)
 - Fallout: due to the gravity and Stoke's law (S)

Lagrangian Model:

$$R_{i}(t + \Delta t) = R_{i}(t) + W(t)\Delta t + Z(t)\Delta t + S_{i}(t)\Delta t \qquad i = 1, \dots \text{ Number of particles}$$

where, $R_i(t)$ is position vector of i^{th} ash particle at time t.

PUFF simulation model

- **W(t)** is the local wind velocity which is calculated for each particle by interpolating four dimensional (longitude/latitude/height/time) wind data (obtained from forecast meteorological data) to the particle's position and time.
- Turbulent dispersion for each particle is modeled with a *random walk* process Z(t). ۲
 - A random walk is a process where a particle takes a step at discrete time intervals in such a manner that each step is independent of the others.
- Turbulent dispersion $Z(t)\Delta t$ is a vector containing three dimensional Gaussian ۲ random numbers with zero mean and specific standard deviation $\sqrt{\frac{2K}{\Delta t}}$.
 - Diffusion coefficient **K** is independent of particle size and local wind dynamics.
- Ash fallout $S_i(t) = [0 \ 0 \ s_i]^T$ is three dimensional vector where the terminal \bullet speed s_i is approximated by using Stoke's law and is a function of radius of the particle r_i , dynamic viscosity coefficient η , gravitational acceleration g_i , density of the particle ρ_{pi} , and density of the atmosphere ρ_f :

$$s_i = \frac{2}{9} \frac{\left(\rho_{p_i} - \rho_f\right)}{\eta} g R_i^2$$

PUFF simulation model

- Initialization

- To initialize the simulation, we need to specify initial location of ash *[lat, lon, z]*, time period of simulation t, and the number of particles N.
- Distribution of particles along elevation *z* direction can be defined in different ways:

- Initialization Bent model:

- In this simulation, **Bent** model has been used instead of mentioned methods for describing the initial distribution of particles along the height.
- BENT solves a cross-sectionally averaged system of equations for continuity, momentum and energy balance as a function of the eruption vent radius and speed of the ejecta.
- BENT assumes a distribution of pyroclasts of different sizes, and the model equations then predict the height distribution of the various sized clasts.
- For this research, the vent size, vent velocity, mean and deviation of particle size form the source parameters which drive the BENT/PUFF model.

Effect of wind on the rise height of volcanic plumes, M. Bursik, *Geophysical Research Letters*, Vol. 28, No. 18, pp. 3621-3624, 2001

- The inverse problem requires a forward model and observations
 - The BENT/PUFF advection-diffusion model is used to represent the plume dynamics

Polynomial Chaos:

- Originally used by Norbert Wiener in 1938, to describe the members of the span of Hermite polynomial functionals of standard Gaussian random variables.
- The PC series representation of random variables is used (Ghanem & Spanos, 1991) to model uncertainty in dynamic systems.
- The Hermite polynomial chaos expansion :
 - A Gaussian random variable: $\omega \in \mathcal{N}(\mu, \sigma^2) = a_0 H_0(\xi) + a_1 H_1(\xi)$
 - **Basis: Hermite polynomials**

$$\mathcal{N}(\mu, \sigma^{2}) = a_{0}H_{0}(\xi) + a_{1}H_{1}(\xi)$$

 $H_{0} = 1$ $H_{1} = \xi \in \mathcal{N}(0, 1)$
 $a_{0} = \mu$ $a_{1} = \sigma$

Generalized (Xiu & Karniadakis, 2002) to use the orthogonal polynomials from the Askey-scheme to model various probability distributions in the scheme, with exponential convergence.

Probability Distribution	Polynomial basis
Gaussian	Hermite Polynomials
Gamma	Laguerre polynomials
Beta	Jacobi polynomials
Uniform	Legendre polynomials

- Forward Propagation

Polynomial Chaos Quadrature: ۲

The propagation of uncertainty due to time-invariant but uncertain input parameters can be approximated by a generalization of polynomial chaos.

$$\dot{\mathbf{x}}(t, \mathbf{\Theta}) = \mathbf{f}(t, \mathbf{\Theta}, \mathbf{x}, \mathbf{u}), \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

where, $X \in \mathbb{R}^n$ and $\Theta \in \mathbb{R}^m$ can be written in Polynomial Chaos Expansion as:

$$\begin{aligned} x_i(t, \mathbf{\Theta}) &= \sum_{k=0}^N x_{i_k}(t)\phi_k(\boldsymbol{\xi}) = \mathbf{x}_i^T(t)\mathbf{\Phi}(\boldsymbol{\xi}) \Rightarrow \mathbf{x}(t, \boldsymbol{\xi}) = \mathbf{X}_{pc}(t)\mathbf{\Phi}(\boldsymbol{\xi}) \\ \theta_i(\boldsymbol{\xi}) &= \sum_{k=0}^N \theta_{i_k}\phi_k(\boldsymbol{\xi}) = \mathbf{\Theta}_i^T\mathbf{\Phi}(\boldsymbol{\xi}) \Rightarrow \mathbf{\Theta}(t, \boldsymbol{\xi}) = \mathbf{\Theta}_{pc}\mathbf{\Phi}(\boldsymbol{\xi}) \quad \theta_{i_k} = \frac{\langle \theta_i(\boldsymbol{\xi}), \phi_k(\boldsymbol{\xi}) \rangle}{\langle \phi_k(\boldsymbol{\xi}), \phi_k(\boldsymbol{\xi}) \rangle} \end{aligned}$$

By substitution of these equations back into stochastic differential equation, we have •

$$\mathbf{e}_i(\mathbf{X}_{pc},\boldsymbol{\xi}) = \sum_{k=0}^N \dot{x}_{i_k}(t)\phi_k(\boldsymbol{\xi}) - \mathbf{f}_i(t,\mathbf{X}_{pc}(t)\Phi(\boldsymbol{\xi}),\boldsymbol{\Theta}_{pc}\Phi(\boldsymbol{\xi})), \quad i = 1, 2, \cdots, n$$

To minimize this error, we use *Galerkin approach* to force its projections on basis functions $\varphi_i(\xi)$ s to be zero.

- Forward Propagation
- Evaluation of projection integrals is not always easy! ullet

$$\langle \mathbf{e}_{i}(\mathbf{X}_{pc},\boldsymbol{\xi}), \phi_{j}(\boldsymbol{\xi}) \rangle =$$

$$\sum_{k=0}^{N} \dot{x}_{i_{k}} \int_{\boldsymbol{\xi}} \phi_{k}(\boldsymbol{\xi}) \phi_{j}(\boldsymbol{\xi}) d\boldsymbol{\xi} - \int_{\boldsymbol{\xi}} \mathbf{f}_{i}(t, \mathbf{X}_{pc}(t) \Phi(\boldsymbol{\xi}), \boldsymbol{\Theta}_{pc} \Phi(\boldsymbol{\xi})) \phi_{j}(\boldsymbol{\xi}) d\boldsymbol{\xi} = 0 \quad i = 1, \cdots, n, \quad j = 0, \cdots, N$$

$$= ?$$

To simplify integration process, we use M Quadrature Points

$$\begin{split} &\int \phi_i(\boldsymbol{\xi}) \phi_j(\boldsymbol{\xi}) p(\boldsymbol{\xi}) d\boldsymbol{\xi} \simeq \sum_{q=1}^M w_q \phi_i(\boldsymbol{\xi}_q) \phi_j(\boldsymbol{\xi}_q) \\ &\int \mathbf{f}_i(t, \mathbf{X}_{pc}(t) \Phi(\boldsymbol{\xi}), \boldsymbol{\Theta}_{pc} \Phi(\boldsymbol{\xi})) \phi_j(\boldsymbol{\xi}) p(\boldsymbol{\xi}) d\boldsymbol{\xi} \simeq \sum_{q=1}^M w_q \mathbf{f}_i(t, \mathbf{X}_{pc}(t) \Phi(\boldsymbol{\xi}_q), \boldsymbol{\Theta}_{pc} \Phi(\boldsymbol{\xi}_q)) \phi_j(\boldsymbol{\xi}_q) \end{split}$$

- Data Assimilation

Minimum Variance Estimator:

$$\hat{\mathbf{z}}_{k}^{+} = \hat{\mathbf{z}}_{k}^{-} + \mathbf{K}_{k} [\tilde{\mathbf{y}}_{k} - \mathbf{E}^{-} [\mathbf{h}(\mathbf{x}_{k})]]$$
$$\boldsymbol{\Sigma}_{k}^{+} = \boldsymbol{\Sigma}_{k}^{-} + \mathbf{K}_{k} \boldsymbol{\Sigma}_{zy}$$
$$\mathbf{K}_{k} = -\boldsymbol{\Sigma}_{zy}^{T} \left(\boldsymbol{\Sigma}_{hh}^{-} + \mathbf{R}_{k}\right)^{-1}$$

Where, z_k is the augmented state vector of states and parameters and prior and posterior mean and covariance matrices are equal to:

$$\hat{\mathbf{z}}_{k}^{-} \triangleq \mathbf{E}^{-}[\mathbf{z}_{k}] = \begin{bmatrix} \mathbf{X}_{pc_{1}}^{-}(t) \\ \mathbf{\Theta}_{pc_{1}}^{-} \end{bmatrix} \quad \boldsymbol{\Sigma}_{k}^{-} \triangleq \mathbf{E}^{-}[(\mathbf{z}_{k} - \hat{\mathbf{z}}_{k}^{-})(\mathbf{z}_{k} - \hat{\mathbf{z}}_{k}^{-})^{T}] = \begin{pmatrix} \sum_{i=1}^{N} \mathbf{X}_{pc_{i}}^{-2} & \sum_{i=1}^{N} \mathbf{X}_{pc_{i}}^{-} \mathbf{\Theta}_{pc_{i}}^{-} \\ \sum_{i=1}^{N} \mathbf{X}_{pc_{i}}^{-} \mathbf{\Theta}_{pc_{i}}^{-} & \sum_{i=1}^{N} \mathbf{\Theta}_{pc_{i}}^{-2} \end{pmatrix}$$

$$\hat{\mathbf{z}}_{k}^{+} \triangleq \mathbf{E}^{+}[\mathbf{z}_{k}] = \begin{bmatrix} \mathbf{X}_{pc_{1}}^{+}(t) \\ \mathbf{\Theta}_{pc_{1}}^{+} \end{bmatrix} \quad \mathbf{\Sigma}_{k}^{+} \triangleq \mathbf{E}^{+}[(\mathbf{z}_{k} - \hat{\mathbf{z}}_{k}^{-})(\mathbf{z}_{k} - \hat{\mathbf{z}}_{k}^{-})^{T}] = \begin{pmatrix} \sum_{i=1}^{N} \mathbf{X}_{pc_{i}}^{+2} & \sum_{i=1}^{N} \mathbf{X}_{pc_{i}}^{+} \mathbf{\Theta}_{pc_{i}}^{+} \\ \sum_{i=1}^{N} \mathbf{X}_{pc_{i}}^{+} \mathbf{\Theta}_{pc_{i}}^{+} & \sum_{i=1}^{N} \mathbf{\Theta}_{pc_{i}}^{+2} \end{pmatrix}$$

3.7

- Data Assimilation

• \tilde{y}_k denotes the sensor output obtained from the following observation model:

$$\mathbf{y}_k \triangleq \mathbf{y}(t_k) = \mathbf{h}(\mathbf{x}_k, \mathbf{\Theta}) + \boldsymbol{\nu}_k$$

with known distribution for the noise v_k .

As well, h_k , Σ_{zy} and Σ_{zz} are defined as: •

$$\hat{\mathbf{h}}_{k}^{-} \triangleq \mathbf{E}^{-}[\mathbf{h}(\mathbf{x}_{k}, \mathbf{\Theta})] = \sum_{a=1}^{M} w_{q} \underbrace{\mathbf{h}(\mathbf{x}_{k}(\boldsymbol{\xi}_{q}))}_{a=1}$$

$$\boldsymbol{\Sigma}_{zy} \triangleq \mathbf{E}^{-}[(\mathbf{z}_{k} - \hat{\mathbf{z}}_{k})(\mathbf{h}(\mathbf{x}_{k}) - \hat{\mathbf{h}}_{k}^{-})^{T}] = \sum_{q=1}^{M} w_{q}(\mathbf{z}_{k}(\boldsymbol{\xi}_{q}) - \hat{\mathbf{z}}_{k}^{-})(\mathbf{h}_{q} - \hat{\mathbf{h}}_{k}^{-})^{T}$$

$$\boldsymbol{\Sigma}_{hh}^{-} \triangleq \mathbf{E}^{-}[(\mathbf{h}(\mathbf{x}_{k}) - \hat{\mathbf{h}}_{k}^{-})(\mathbf{h}(\mathbf{x}_{k}) - \hat{\mathbf{h}}_{k}^{-})^{T}] = \sum_{q=1}^{M} w_{q}(\mathbf{h}_{q} - \hat{\mathbf{h}}_{k}^{-})(\mathbf{h}_{q} - \hat{\mathbf{h}}_{k}^{-})^{T}$$

Simulation:

- For validation purposes, we consider the Eyjafjallajökull eruption scenario. ٠
- PUFF model used to propagate ash parcels in a given wind field (NCEP Reanalysis) ۲ through time concentrating on the period 14–16 April 2010.
- Variability in the height and loading of the eruption is introduced through the ۲ volcano column model BENT.
- Table 1 lists all source variables together with their assumed uncertainties. ۲

Parameter	Value Range	PDF
Vent Radius, b ₀ (m)	65 – 150	Uniform, + definite
Vent Velocity, w ₀ (m/s)	45 – 124	Uniform, + definite
Mean Grain Size, Md _φ , φ units	2 boxcars: 1.5 -2 and 3 – 5	Uniform e R
$σ_{\phi}$, φ units	2 - 6	Uniform e R

Simulation

• Forward Propagation:

(a) April 16th, 0000 hrs

(b) April 16th, 1200 hrs

Probability distribution contours and satellite image

Outer Contour: 0.2 (probability of ash present in enclosed area is >=20%) Inner Contour: 0.7 (probability of ash present in enclosed area is >=70%) Colored plume: spatial variation of observed plume ash height

Simulation

• Inverse Problem:

1723 W

SCIPUFF

SCIPUFF (Second-order Closure Integrated PUFF)

- Developed by Titan Corporation, Princeton, NJ under the sponsorship of U.S. • Defense Special Weapons Agency (DSWA)
- a Lagrangian transport and diffusion model for atmospheric dispersion applications.
- uses three dimensional Gaussian puff representation for the concentration field of a dispersing contaminant to solve advectiondiffusion equation.

Location Uncertainty

• Source of the material is assumed to be uniformly distributed on a square of [2, 4] x [2, 4] km².

- Time period of simulation is considered to be 1 hour (3600 sec.)
- 101 x 101 grid is used to record the concentration of Propane during the propagation time period.

t Buffalo The State University of New York

PCQ approach

- 10x 10 quadrature points are being used to cover the support of source location.
- These quadrature points are propagated by using SCIPUFF model during the time.
- Polynomial basis functions are constructed according to the applied distribution for the uncertain source location.
- Coefficients of PC expansions can be found using the Polynomial Chaos quadrature technique.
- After finding coefficients, PC expansion of the output of the SCIPUFF model is constructed acc. to distribution of uncertain source.
- Large number of realizations of PC expansion is generated.
- Probability Distribution of concentration > threshold is equal to the number of PC realizations which are greater than that threshold divided by the total number of realizations.

• Given a *set of observation* data and a priori information about the source location, what is the best guess about the actual position of the source?

$$\tilde{y}_k = h(t_k, c_k(z)) + v_k$$

 $\nu = N(0, R)$

where, $x \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}^m$, $n \gg m$ and $Z \in \mathbb{R}^2$ represent states, observations, and coordination of source location, respectively.

Source Identification

- Numerical Simulations

- 16 sparsely distributed sensors have been considered for observation purposes.
- Observation data are polluted with noise.
- Source location is assumed to be uniformly distributed over [2,4]x[2,4] km².
- Actual source location is at point (3.8, 2.2).
- Source uncertainty is assumed to be the only uncertainty in the model dynamics.

Source Identification using PCQ

University at Buffalo The State University of New York

Conclusion

Polynomial Chaos based minimum variance estimator

- Performs well in estimation of parameters of the system. ۲
- Applicable to any type of probability distribution for the parameters (as opposed • to Kalman Filter).
- Applicable to large scale systems (>18000 states in illustrated example, about 4000 • grid locations with non-zero ash).
- Has been verified on other examples like source estimation of atmospheric ۲ releases by using SCIPUFF model.
- Can be applied as a batch or recursive estimation techniques. ۲

